3,769 research outputs found

    EXAMINATION OF CONSISTENCY ON THE OHIO ACHIEVEMENT ASSESSMENTS AND OHIO GRADUATION TEST

    Get PDF
    This study investigated a cohort of students’ performance on the Ohio Achievement Assessments (OAA) and Ohio Graduation Tests (OGT). The purpose of this study was to investigate the consistency of a cohort’s reported scores on the OAA over a four-year period (5th, 6th, 7th and 8th grades) and reported scores on their OGT assessment; this was accomplished through the examination of OAA and OGT data from a rural school district located in central Ohio. The data were analyzed using correlations, regressions, and repeated measures ANOVA. A Pearson product-moment correlation coefficient was computed indicating positive correlations between all OAA and OGT assessments analyzed. A regression analysis indicated the 8th grade OAA assessment is the most important predictor of the OGT assessment. The ANOVA suggested that differences between mean scores in the OAA and OGT assessments are not statistically significant indicating the scores are consistent with each other

    An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my

    Get PDF
    We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source ("Source 1") is too large: > 0.08", which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected ("Source 2") that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a star's initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.Comment: Minor text changes from Version 1. Appendix added detailing the determination of confidence level of non-association of point sources in two registered astronomical image

    Population-based study of ischemic stroke risk after trauma in children and young adults.

    Get PDF
    OBJECTIVE:To quantify the incidence, timing, and risk of ischemic stroke after trauma in a population-based young cohort. METHODS:We electronically identified trauma patients (<50 years old) from a population enrolled in a Northern Californian integrated health care delivery system (1997-2011). Within this cohort, we identified cases of arterial ischemic stroke within 4 weeks of trauma and 3 controls per case. A physician panel reviewed medical records, confirmed cases, and adjudicated whether the stroke was related to trauma. We calculated the 4-week stroke incidence and estimated stroke odds ratios (OR) by injury location using logistic regression. RESULTS:From 1,308,009 trauma encounters, we confirmed 52 trauma-related ischemic strokes. The 4-week stroke incidence was 4.0 per 100,000 encounters (95% confidence interval [CI] 3.0-5.2). Trauma was multisystem in 26 (50%). In 19 (37%), the stroke occurred on the day of trauma, and all occurred within 15 days. In 7/28 cases with cerebrovascular angiography at the time of trauma, no abnormalities were detected. In unadjusted analyses, head, neck, chest, back, and abdominal injuries increased stroke risk. Only head (OR 4.1, CI 1.1-14.9) and neck (OR 5.6, CI 1.03-30.9) injuries remained associated with stroke after adjusting for demographics and trauma severity markers (multisystem trauma, motor vehicle collision, arrival by ambulance, intubation). CONCLUSIONS:Stroke risk is elevated for 2 weeks after trauma. Onset is frequently delayed, providing an opportunity for stroke prevention during this period. However, in one-quarter of stroke cases with cerebrovascular angiography at the time of trauma, no vascular abnormality was detected

    Integrated Spacecraft Autonomous Attitude Control (ISAAC)

    Get PDF
    The purpose of this project is to give undergraduate students an opportunity to design, manufacture, and maintain a mock spacecraft to be used as a testbed for autonomous control systems. The spacecraft is based on two previous models: the JX-01, an undergraduate built testbed, and the Asteroid Free Flyer led by NASA engineer and ERAU doctoral student, Michael Dupuis. This model includes cable improvements, Inertial Measurement Units (IMU), Light Detection and Ranging (LIDAR), and object-based state estimation to improve control stabilization. When completed, the hardware built for this project will provide undergraduates and researchers a platform with which they can test control algorithms and spacecraft component design. The results gathered from the project thus far is the building and design and controls experience between the team. After completion we will be able to obtain a properly modeled control algorithm and test it against multiple conditions. The final goal of the spacecraft is to provide the capabilities and perform experiments to test multiple methods to mitigate the effects of internal and external forces such as fuel sloshing, solar radiation, debris collision, and CG change

    Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera

    Get PDF
    Planktonic foraminifera are widely used in biostratigraphic, palaeoceanographic and evolutionary studies, but the strength of many study conclusions could be weakened if taxonomic identifications are not reproducible by different workers. In this study, to assess the relative importance of a range of possible reasons for among-worker disagreement in identification, 100 specimens of 26 species of macroperforate planktonic foraminifera were selected from a core-top site in the subtropical Pacific Ocean. Twenty-three scientists at different career stages – including some with only a few days experience of planktonic foraminifera – were asked to identify each specimen to species level, and to indicate their confidence in each identification. The participants were provided with a species list and had access to additional reference materials. We use generalised linear mixed-effects models to test the relevance of three sets of factors in identification accuracy: participant-level characteristics (including experience), species-level characteristics (including a participant’s knowledge of the species) and specimen-level characteristics (size, confidence in identification). The 19 less experienced scientists achieve a median accuracy of 57 %, which rises to 75 % for specimens they are confident in. For the 4 most experienced participants, overall accuracy is 79 %, rising to 93 % when they are confident. To obtain maximum comparability and ease of analysis, everyone used a standard microscope with only 35× magnification, and each specimen was studied in isolation. Consequently, these data provide a lower limit for an estimate of consistency. Importantly, participants could largely predict whether their identifications were correct or incorrect: their own assessments of specimen-level confidence and of their previous knowledge of species concepts were the strongest predictors of accuracy

    Integrated Spacecraft Autonomous Attitude Control (ISAAC)

    Get PDF
    The purpose of this project is to give undergraduate students an opportunity to design, manufacture, and maintain a mock spacecraft to be used as a testbed for autonomous control systems. The spacecraft is based on two previous models: the JX-01, an undergraduate built testbed, and the Asteroid Free Flyer led by NASA engineer and ERAU doctoral student, Michael Dupuis. This model includes cable improvements, Inertial Measurement Units (IMU), Light Detection and Ranging (LIDAR), and object-based state estimation to improve control stabilization. When completed, the hardware built for this project will provide undergraduates and researchers a platform with which they can test control algorithms and spacecraft component design. The results gathered from the project thus far is the building and design and controls experience between the team. After completion we will be able to obtain a properly modeled control algorithm and test it against multiple conditions. The final goal of the spacecraft is to provide the capabilities and perform experiments to test multiple methods to mitigate the effects of internal and external forces such as fuel sloshing, solar radiation, debris collision, and CG change
    corecore