3,476 research outputs found

    High-Fidelity Control, Detection, and Entanglement of Alkaline-Earth Rydberg Atoms

    Get PDF
    Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here, we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations and two-atom entanglement that surpass previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom–ion systems, and set the stage for alkaline-earth based quantum computing architectures

    The Case for an Accelerating Universe from Supernovae

    Get PDF
    The unexpected faintness of high-redshift Type Ia supernovae (SNe Ia), as measured by two teams, has been interpreted as evidence that the expansion of the Universe is accelerating. We review the current challenges to this interpretation and seek to answer whether the cosmological implications are compelling. We discuss future observations of SNe Ia which could offer extraordinary evidence to test acceleration.Comment: To appear as an Invited Review for PASP 20 pages, 13 figure

    Dark-state enhanced loading of an optical tweezer array

    Full text link
    Neutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this technique with a 95-tweezer array of 88^{88}Sr atoms, achieving a maximum loading probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is complementary to, and compatible with, existing schemes for enhanced loading based on direct control over light-assisted collisions, and we predict it can enable close-to-unity filling for arrays of atoms or molecules

    Erasure-cooling, control, and hyper-entanglement of motion in optical tweezers

    Full text link
    We demonstrate how motional degrees of freedom in optical tweezers can be used as quantum information carriers. To this end, we first implement a species-agnostic cooling mechanism via conversion of motional excitations into erasures - errors with a known location - reminiscent of Maxwell's demon thought experiment. We find that this cooling mechanism fundamentally outperforms idealized traditional sideband cooling, which we experimentally demonstrate in specific scenarios. By coherently manipulating the motional state, we perform mid-circuit readout and mid-circuit erasure detection of an optical qubit via local shelving into motional superposition states. We finally entangle the motion of two atoms in separate tweezers, and utilize this to generate hyper-entanglement by preparing a simultaneous Bell state of motional and optical qubits. This work shows how controlling motion enriches the toolbox of quantum information processing with neutral atoms, and opens unique prospects for metrology enhanced by mid-circuit readout and a large class of quantum operations enabled via hyper-entanglement.Comment: PS, ALS and RF contributed equally to this wor

    Erasure conversion in a high-fidelity Rydberg quantum simulator

    Full text link
    Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices and for the quest towards fault-tolerant quantum computation. Rydberg arrays have emerged as a prominent platform in this context with impressive system sizes and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution, a form of erasure error conversion. However, two-qubit entanglement fidelities in Rydberg atom arrays have lagged behind competitors and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator. We implement erasure conversion via fast imaging of alkaline-earth atoms, which leaves atoms in a metastable state unperturbed and yields additional information independent of the final qubit readout. When excising data with observed erasure errors, we achieve a lower-bound for the Bell state generation fidelity of 0.997113+10{\geq} 0.9971^{+10}_{-13}, which improves to 0.998512+7{\geq}0.9985^{+7}_{-12} when correcting for remaining state preparation errors. We further demonstrate erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, where we explicitly differentiate erasure conversion of preparation and Rydberg decay errors. We unveil the otherwise hidden impact of these errors on the simulation outcome by evaluating correlations between erasures and the final readout as well as between erasures themselves. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999{\sim} 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices.Comment: PS and ALS contributed equally to this wor

    Acute exercise alters skeletal muscle mitochondrial respiration and H2O2 emission in response to hyperinsulinemic-euglycemic clamp in middle-aged obese men

    Get PDF
    Obesity, sedentary lifestyle and aging are associated with mitochondrial dysfunction and impaired insulin sensitivity. Acute exercise increases insulin sensitivity in skeletal muscle; however, whether mitochondria are involved in these processes remains unclear. The aim of this study was to investigate the effects of insulin stimulation at rest and after acute exercise on skeletal muscle mitochondrial respiratory function (JO2) and hydrogen peroxide emission (JH2O2), and the associations with insulin sensitivity in obese, sedentary men. Nine men (means ± SD: 57 ± 6 years; BMI 33 ± 5 kg.m2) underwent hyperinsulinemic-euglycemic clamps in two separate trials 1–3 weeks apart: one under resting conditions, and another 1 hour after high-intensity exercise (4x4 min cycling at 95% HRpeak). Muscle biopsies were obtained at baseline, and pre/post clamp to measure JO2 with high-resolution respirometry and JH2O2 via Amplex UltraRed from permeabilized fibers. Post-exercise, both JO2 and JH2O2 during ADP stimulated state-3/OXPHOS respiration were lower compared to baseline (P<0.05), but not after subsequent insulin stimulation. JH2O2 was lower post-exercise and after subsequent insulin stimulation compared to insulin stimulation in the rest trial during succinate supported state-4/leak respiration (P<0.05). In contrast, JH2O2 increased during complex-I supported leak respiration with insulin after exercise compared with resting conditions (P<0.05). Resting insulin sensitivity and JH2O2 during complex-I leak respiration were positively correlated (r = 0.77, P<0.05). We conclude that in obese, older and sedentary men, acute exercise modifies skeletal muscle mitochondrial respiration and H2O2 emission responses to hyperinsulinemia in a respiratory state-specific manner, which may have implications for metabolic diseases involving insulin resistance

    The development and evaluation of mini-GEMs: a short, focused, online e-learning videos in geriatric medicine

    Get PDF
    Mini Geriatric E-Learning Modules (Mini-GEMs) are short, focused, e-learning videos on geriatric medicine topics, hosted on YouTube, which are targeted at junior doctors working with older people. This study aimed to explore how these resources are accessed and used. The authors analyzed the viewing data from 22 videos published over the first 18 months of the Mini-GEM project. We conducted a focus group of U.K. junior doctors considering their experiences with Mini-GEMS. The Mini-GEMs were viewed 10,291 times over 18 months, equating to 38,435 minutes of total viewing time. The average viewing time for each video was 3.85 minutes. Learners valued the brevity and focused nature of the Mini-GEMs and reported that they watched them in a variety of settings to supplement clinical experiences and consolidate learning. Watching the videos led to an increase in self-reported confidence in managing older patients. Mini-GEMs can effectively disseminate clinical teaching material to a wide audience. The videos are valued by junior doctors due to their accessibility and ease of use

    Multi-ensemble metrology by programming local rotations with atom movements

    Full text link
    Current optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain could be achieved if multiple atomic ensembles were to be controlled or read-out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral atom based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of tweezer-trapped atoms, which we perform with 99.84(5)%99.84(5)\% fidelity and with 0.1(2)%0.1(2)\% crosstalk to non-addressed atoms. The scheme is highly robust as it relies only on relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability, yielding a 2.55(9) dB gain over standard, single-ensemble methods. Finally, we program a sequence which performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future

    Emergent quantum state designs from individual many-body wavefunctions

    Full text link
    Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of thermalization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state kk-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that kk-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.Comment: 7+19 pages, 6 figure
    corecore