32,907 research outputs found
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
The origin of the near-ultraviolet and optical continuum radiation in flares
is critical for understanding particle acceleration and impulsive heating in
stellar atmospheres. Radiative-hydrodynamic simulations in 1D have shown that
high energy deposition rates from electron beams produce two flaring layers at
T~10^4 K that develop in the chromosphere: a cooling condensation (downflowing
compression) and heated non-moving (stationary) flare layers just below the
condensation. These atmospheres reproduce several observed phenomena in flare
spectra, such as the red wing asymmetry of the emission lines in solar flares
and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations
are computationally expensive in 1D, and the (human) timescales for completing
NLTE models with adaptive grids in 3D will likely be unwieldy for a time to
come. We have developed a prescription for predicting the approximate evolved
states, continuum optical depth, and the emergent continuum flux spectra of
radiative-hydrodynamic model flare atmospheres. These approximate prescriptions
are based on an important atmospheric parameter: the column mass (m_ref) at
which hydrogen becomes nearly completely ionized at the depths that are
approximately in steady state with the electron beam heating. Using this new
modeling approach, we find that high energy flux density (>F11) electron beams
are needed to reproduce the brightest observed continuum intensity in IRIS data
of the 2014-Mar-29 X1 solar flare and that variation in m_ref from 0.001 to
0.02 g/cm2 reproduces most of the observed range of the optical continuum flux
ratios at the peaks of M dwarf flares.Comment: 29 pages, 9 figures, accepted for publication in the Astrophysical
Journa
Integrable subsystem of Yang--Mills dilaton theory
With the help of the Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2)
Yang-Mills field, we find an integrable subsystem of SU(2) Yang-Mills theory
coupled to the dilaton. Here integrability means the existence of infinitely
many symmetries and infinitely many conserved currents. Further, we construct
infinitely many static solutions of this integrable subsystem. These solutions
can be identified with certain limiting solutions of the full system, which
have been found previously in the context of numerical investigations of the
Yang-Mills dilaton theory. In addition, we derive a Bogomolny bound for the
integrable subsystem and show that our static solutions are, in fact, Bogomolny
solutions. This explains the linear growth of their energies with the
topological charge, which has been observed previously. Finally, we discuss
some generalisations.Comment: 25 pages, LaTex. Version 3: appendix added where the equivalence of
the field equations for the full model and the submodel is demonstrated;
references and some comments adde
Multiple zero modes of the Dirac operator in three dimensions
One of the key properties of Dirac operators is the possibility of a
degeneracy of zero modes. For the Abelian Dirac operator in three dimensions
the construction of multiple zero modes has been sucessfully carried out only
very recently. Here we generalise these results by discussing a much wider
class of Dirac operators together with their zero modes. Further we show that
those Dirac operators that do admit zero modes may be related to Hopf maps,
where the Hopf index is related to the number of zero modes in a simple way.Comment: Latex file, 20 pages, no figure
Recommended from our members
Assessing the climate vulnerability of the world’s natural and cultural heritage
Climate change is the fastest-growing global threat to the world’s natural and cultural heritage. No systematic approach to assess climate vulnerability of protected areas and their associated communities has existed—until now. The Climate Vulnerability Index (CVI) is scientifically robust, transparent, and repeatable, and has now been applied to various World Heritage properties. The CVI builds upon an established Intergovernmental Panel on Climate Change (IPCC) framework to systematically assess vulnerability through a risk assessment approach that considers the key values of the World Heritage property in question and identifies key climate stressors. The CVI process is then used to assess the climate-related vulnerability of the community (including local residents, domestic visitors, and international tourists) associated with the World Heritage property considering economic, social, and cultural connections. Climate impacts are increasingly adding to a wide range of compounding pressures (e.g., increasing tourism, infrastructure development, changing land use practices) that are affecting places, people, customs, and values. Applications of the CVI to date have led to commitments to integrate outcomes into relevant management plans, and to periodically repeat the process, enabling responsive management to changing future circumstances. The CVI has also demonstrated its potential applicability for protected areas beyond World Heritage properties. The CVI process engages local community members in determining impacts, provides opportunities for identifying adaptation and impact mitigation within the community, and aids broader communication about key climate issues
A Unified Computational Model for Solar and Stellar Flares
We present a unified computational framework which can be used to describe
impulsive flares on the Sun and on dMe stars. The models assume that the flare
impulsive phase is caused by a beam of charged particles that is accelerated in
the corona and propagates downward depositing energy and momentum along the
way. This rapidly heats the lower stellar atmosphere causing it to explosively
expand and dramatically brighten. Our models consist of flux tubes that extend
from the sub-photosphere into the corona. We simulate how flare-accelerated
charged particles propagate down one-dimensional flux tubes and heat the
stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative
transfer is included so that model predictions can be directly compared with
observations. The flux of flare-accelerated particles drives return currents
which additionally heat the stellar atmosphere. These effects are also included
in our models. We examine the impact of the flare-accelerated particle beams on
model solar and dMe stellar atmospheres and perform parameter studies varying
the injected particle energy spectra. We find the atmospheric response is
strongly dependent on the accelerated particle cutoff energy and spectral
index.Comment: Accepted for publication by the Astrophysical Journa
- …