3,355 research outputs found

    High-Q-factor Al [subscript 2]O[subscript 3] micro-trench cavities integrated with silicon nitride waveguides on silicon

    Get PDF
    We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 10[superscript 6]. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms

    Gaseous, PM2.5 Mass, and Speciated Emission Factors from Laboratory Chamber Peat Combustion

    Get PDF
    Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82+/-0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 +/- 38 g kg(-1)) and lowest (1073 +/- 63 g kg(-1)) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are similar to 12 %15 % and similar to 0.3 %0.9 % of EFCO2, in the range of 157171 and 310 g kg(-1), respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 +/- 4.8 and 4.7 +/- 3.1 g kg(-1) for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9+/-1.1 g kg(-1) for EFNOx (nitrogen oxides); and 2.4+/-1.4 and 2.0 +/- 0.7 g kg(-1) for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of similar to 2 and similar to 7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by \u3e 4-fold (1461 g kg(-1)) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC / EFPM2.5 ratios in the range of 52 %98 % for fresh emissions and similar to 14 %23 % degradation after aging. Reductions of EFOC (similar to 79 g kg(-1)) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at \u3c 140 degrees C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (similar to 16 g kg(-1)), with similar to 35 %50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for similar to 20 %62 % of fresh EFOC. The majority (\u3e 95 %) of the total emitted carbon is in the gas phase, with 54 %75 % CO2, followed by 8 %30 % CO. Nitrogen in the measured species explains 24 %52 % of the consumed fuel nitrogen, with an average of 35 +/- 11 %, consistent with past studies that report similar to 1/3 to 2/3 of the fuel nitrogen measured in biomass smoke. The majority (\u3e 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN center dot N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories

    Changes in PM2.5 Peat Combustion Source Profiles with Atmospheric Aging in an Oxidation Flow Reactor

    Full text link
    Smoke from laboratory chamber burning of peat fuels from Russia, Siberia, the USA (Alaska and Florida), and Malaysia representing boreal, temperate, subtropical, and tropical regions was sampled before and after passing through a potential-aerosol-mass oxidation flow reactor (PAM-OFR) to simulate intermediately aged (∼2 d) and well-aged (∼7 d) source profiles. Species abundances in PM2.5 between aged and fresh profiles varied by several orders of magnitude with two distinguishable clusters, centered around 0.1 % for reactive and ionic species and centered around 10 % for carbon. Organic carbon (OC) accounted for 58 %–85 % of PM2.5 mass in fresh profiles with low elemental carbon (EC) abundances (0.67 %–4.4 %). OC abundances decreased by 20 %–33 % for well-aged profiles, with reductions of 3 %–14 % for the volatile OC fractions (e.g., OC1 and OC2, thermally evolved at 140 and 280 ∘C). Ratios of organic matter (OM) to OC abundances increased by 12 %–19 % from intermediately aged to well-aged smoke. Ratios of ammonia (NH3) to PM2.5 decreased after intermediate aging. Well-aged NH+4 and NO−3 abundances increased to 7 %–8 % of PM2.5 mass, associated with decreases in NH3, low-temperature OC, and levoglucosan abundances for Siberia, Alaska, and Everglades (Florida) peats. Elevated levoglucosan was found for Russian peats, accounting for 35 %–39 % and 20 %–25 % of PM2.5 mass for fresh and aged profiles, respectively. The water-soluble organic carbon (WSOC) fractions of PM2.5 were over 2-fold higher in fresh Russian peat (37.0±2.7 %) than in Malaysian (14.6±0.9 %) peat. While Russian peat OC emissions were largely water-soluble, Malaysian peat emissions were mostly water-insoluble, with WSOC ∕ OC ratios of 0.59–0.71 and 0.18–0.40, respectively. This study shows significant differences between fresh and aged peat combustion profiles among the four biomes that can be used to establish speciated emission inventories for atmospheric modeling and receptor model source apportionment. A sufficient aging time (∼7 d) is needed to allow gas-to-particle partitioning of semi-volatilized species, gas-phase oxidation, and particle volatilization to achieve representative source profiles for regional-scale source apportionment

    Robust evidence for bisexual orientation among men

    Get PDF
    The question whether some men have a bisexual orientation—that is, whether they are substantially sexually aroused and attracted to both sexes—has remained controversial among both scientists and laypersons. Skeptics believe that male sexual orientation can only be homosexual or heterosexual, and that bisexual identification reflects nonsexual concerns, such as a desire to deemphasize homosexuality. Although most bisexual-identified men report that they are attracted to both men and women, self-report data cannot refute these claims. Patterns of physiological (genital) arousal to male and female erotic stimuli can provide compelling evidence for male sexual orientation. (In contrast, most women provide similar physiological responses to male and female stimuli.) We investigated whether men who self-report bisexual feelings tend to produce bisexual arousal patterns. Prior studies of this issue have been small, used potentially invalid statistical tests, and produced inconsistent findings. We combined nearly all previously published data (from eight previous studies in the United States, United Kingdom, and Canada), yielding a sample of 474 to 588 men (depending on analysis). All participants were cisgender males. Highly robust results showed that bisexual-identified men’s genital and subjective arousal patterns were more bisexual than were those who identified as exclusively heterosexual or homosexual. These findings support the view that male sexual orientation contains a range, from heterosexuality, to bisexuality, to homosexuality

    Effects of intersegmental transfers on target location by proteins

    Full text link
    We study a model for a protein searching for a target, using facilitated diffusion, on a DNA molecule confined in a finite volume. The model includes three distinct pathways for facilitated diffusion: (a) sliding - in which the protein diffuses along the contour of the DNA (b) jumping - where the protein travels between two sites along the DNA by three-dimensional diffusion, and finally (c) intersegmental transfer - which allows the protein to move from one site to another by transiently binding both at the same time. The typical search time is calculated using scaling arguments which are verified numerically. Our results suggest that the inclusion of intersegmental transfer (i) decreases the search time considerably (ii) makes the search time much more robust to variations in the parameters of the model and (iii) that the optimal search time occurs in a regime very different than that found for models which ignore intersegmental transfers. The behavior we find is rich and shows surprising dependencies, for example, on the DNA length.Comment: 40 pages, 14 figure

    Combined population genomic screening for three high-risk conditions in Australia: a modelling study

    Get PDF
    BACKGROUND: No previous health-economic evaluation has assessed the impact and cost-effectiveness of offering combined adult population genomic screening for mutliple high-risk conditions in a national public healthcare system. METHODS: This modeling study assessed the impact of offering combined genomic screening for hereditary breast and ovarian cancer, Lynch syndrome and familial hypercholesterolaemia to all young adults in Australia, compared with the current practice of clinical criteria-based testing for each condition separately. The intervention of genomic screening, assumed as an up-front single cost in the first annual model cycle, would detect pathogenic variants in seven high-risk genes. The simulated population was 18–40 year-olds (8,324,242 individuals), modelling per-sample test costs ranging AU100100–1200 (base-case AU200)fromtheyear2023onwardswithtestinguptakeof50FINDINGS:Overthepopulationlifetime(toage80years),themodelestimatedthatgenomicscreeningper100,000individualswouldleadto747QALYsgainedbypreventing63cancers,31CHDcasesand97deaths.Inthetotalmodelpopulation,thiswouldtranslateto31,094QALYsgainedbypreventing2612cancers,542nonfatalCHDeventsand4047totaldeaths.AtAU200) from the year 2023 onwards with testing uptake of 50%. Interventions for identified high-risk variant carriers follow current Australian guidelines, modelling imperfect uptake and adherence. Outcome measures were morbidity and mortality due to cancer (breast, ovarian, colorectal and endometrial) and coronary heart disease (CHD) over a lifetime horizon, from healthcare-system and societal perspectives. Outcomes included quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER), discounted 5% annually (with 3% discounting in scenario analysis). FINDINGS: Over the population lifetime (to age 80 years), the model estimated that genomic screening per-100,000 individuals would lead to 747 QALYs gained by preventing 63 cancers, 31 CHD cases and 97 deaths. In the total model population, this would translate to 31,094 QALYs gained by preventing 2612 cancers, 542 non-fatal CHD events and 4047 total deaths. At AU200 per-test, genomic screening would require an investment of AU832millionforscreeningof50832 million for screening of 50% of the population. Our findings suggest that this intervention would be cost-effective from a healthcare-system perspective, yielding an ICER of AU23,926 (∼£12,050/€14,110/US15,345)perQALYgainedoverthestatusquo.Inscenarioanalysiswith315,345) per QALY gained over the status quo. In scenario analysis with 3% discounting, an ICER of AU4758/QALY was obtained. Sensitivity analysis for the base case indicated that combined genomic screening would be cost-effective under 70% of simulations, cost-saving under 25% and not cost-effective under 5%. Threshold analysis showed that genomic screening would be cost-effective under the AU50,000/QALYwillingnesstopaythresholdatpertestcostsuptoAU50,000/QALY willingness-to-pay threshold at per-test costs up to AU325 (∼£164/€192/US$208). INTERPRETATION: Our findings suggest that offering combined genomic screening for high-risk conditions to young adults would be cost-effective in the Australian public healthcare system, at currently realistic testing costs. Other matters, including psychosocial impacts, ethical and societal issues, and implementation challenges, also need consideration. FUNDING: Australian Government, Department of Health, Medical Research Future Fund, Genomics Health Futures Mission (APP2009024). National Heart Foundation Future Leader Fellowship (102604)

    The network topology of a potential energy landscape: A static scale-free network

    Full text link
    Here we analyze the topology of the network formed by the minima and transition states on the potential energy landscape of small clusters. We find that this network has both a small-world and scale-free character. In contrast to other scale-free networks, where the topology results from the dynamics of the network growth, the potential energy landscape is a static entity. Therefore, a fundamentally different organizing principle underlies this behaviour: The potential energy landscape is highly heterogeneous with the low-energy minima having large basins of attraction and acting as the highly-connected hubs in the network.Comment: 4 pages, 4 figures, revtex

    VERTICO VI: Cold-gas asymmetries in Virgo cluster galaxies

    Full text link
    We analyze cold-gas distributions in Virgo cluster galaxies using resolved CO(2-1) (tracing molecular hydrogen, H2) and HI observations from the Virgo Environment Traced In CO (VERTICO) and the VLA Imaging of Virgo in Atomic Gas (VIVA) surveys. From a theoretical perspective, it is expected that environmental processes in clusters will have a stronger influence on diffuse atomic gas compared to the relatively dense molecular gas component, and that these environmental perturbations can compress the cold interstellar medium in cluster galaxies leading to elevated star formation. In this work we observationally test these predictions for star-forming satellite galaxies within the Virgo cluster. We divide our Virgo galaxy sample into HI-normal, HI-tailed, and HI-truncated classes and show, unsurprisingly, that the HI-tailed galaxies have the largest quantitative HI asymmetries. We also compare to a control sample of non-cluster galaxies and find that Virgo galaxies, on average, have HI asymmetries that are 40 +/- 10 per cent larger than the control. There is less separation between control, HI-normal, HI-tailed, and HI-truncated galaxies in terms of H2 asymmetries, and on average, Virgo galaxies have H2 asymmetries that are only marginally (20 +/- 10 per cent) larger than the control sample. We find a weak correlation between HI and H2 asymmetries over our entire sample, but a stronger correlation for those specific galaxies being strongly impacted by environmental perturbations. Finally, we divide the discs of the HI-tailed Virgo galaxies into a leading half and trailing half according to the observed tail direction. We find evidence for excess molecular gas mass on the leading halves of the disc. This excess molecular gas on the leading half is accompanied by an excess in star formation rate such that the depletion time is, on average, unchanged.Comment: 15 pages, 8 figures, 1 table, accepted for publication in A&

    Commuting and wellbeing: A critical overview of the literature with implications for policy and future research

    Get PDF
    © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This review provides a critical overview of what has been learnt about commuting’s impact on subjective wellbeing (SWB). It is structured around a conceptual model which assumes commuting can affect SWB over three time horizons: (i) during the journey; (ii) immediately after the journey; and (iii) over the longer term. Our assessment of the evidence shows that mood is lower during the commute than other daily activities and stress can be induced by congestion, crowding and unpredictability. People who walk or cycle to work are generally more satisfied with their commute than those who travel by car and especially those who use public transport. Satisfaction decreases with duration of commute, regardless of mode used, and increases when travelling with company. After the journey, evidence shows that the commute experience “spills over” into how people feel and perform at work and home. However, a consistent link between commuting and life satisfaction overall has not been established. The evidence suggests that commuters are generally successful in trading off the drawbacks of longer and more arduous commute journeys against the benefits they bring in relation to overall life satisfaction, but further research is required to understand the decision making involved. The evidence review points to six areas that warrant policy action and research: (i) enhancing the commute experience; (ii) increasing commute satisfaction; (iii) reducing the impacts of long duration commutes; (iv) meeting commuter preferences; (v) recognising flexibility and constraints in commuting routines and (vi) accounting for SWB impacts of commuting in policy making and appraisal

    VERTICO VII: Environmental quenching caused by suppression of molecular gas content and star formation efficiency in Virgo Cluster galaxies

    Full text link
    We study how environment regulates the star formation cycle of 33 Virgo Cluster satellite galaxies on 720 parsec scales. We present the first resolved star-forming main sequence for cluster galaxies, dividing the sample based on their global HI properties and comparing to a control sample of field galaxies. HI-poor cluster galaxies have reduced star formation rate (SFR) surface densities with respect to both HI-normal cluster and field galaxies (0.5 dex), suggesting that mechanisms regulating the global HI content are responsible for quenching local star formation. We demonstrate that the observed quenching in HI-poor galaxies is caused by environmental processes such as ram pressure stripping (RPS) simultaneously reducing molecular gas surface density and star formation efficiency (SFE), compared to regions in HI-normal systems (by 0.38 and 0.22 dex, respectively). We observe systematically elevated SFRs that are driven by increased molecular gas surface densities at fixed stellar mass surface density in the outskirts of early-stage RPS galaxies, while SFE remains unchanged with respect to the field sample. We quantify how RPS and starvation affect the star formation cycle of inner and outer galaxy discs as they are processed by the cluster. We show both are effective quenching mechanisms with the key difference being that RPS acts upon the galaxy outskirts while starvation regulates the star formation cycle throughout disc, including within the truncation radius. For both processes, the quenching is caused by a simultaneous reduction in molecular gas surface densities and SFE at fixed stellar mass surface density.Comment: 17 pages, 1 table, 5 figures, accepted for publication in Ap
    corecore