2,292 research outputs found

    Precambrian mineralising events in central West Greenland (66°–70°15´N)

    Get PDF
    During the past decade the Geological Survey of Denmark and Greenland (GEUS) has carried out two major resource evaluations in the Precambrian basement terranes of South and West Greenland in order to locate potential areas of mineral deposits (Steenfelt et al. 2000, 2004; Stendal & Schønwandt 2003; Stendal et al. 2004). Based on geological field work and geochemical and geophysical data, these evaluations have assessed the interplay between the magmatic, tectonic and metamorphic evolution in the study areas and their mineralising events. As a result of the second of these evaluations it is now possible to outline a succession of mineralising events in the northern part of the Nagssugtoqidian orogen and in the Disko Bugt area of central West Greenland (Fig. 1), and relate them to the general Archaean and Palaeoproterozoic geological evolution of this region. However, uncertainties still exist concerning the age and detailed setting of many epigenetic mineralisations

    Instabilities in tensorial nonlocal gravity

    Get PDF
    We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly growing energy density. These models therefore generically do not have a stable cosmological evolution.Comment: 10 pages, 2 figures. v2: version published in PR

    Investigation of steam regeneration strategies for industrial-scale temperature-swing adsorption of benzene on activated carbon

    Get PDF
    Large-scale separation of substances present at low concentrations is readily performed by adsorption in packed beds that requires recurring energy-intensive regeneration of the adsorbent. The present work uses numerical simulations previously developed for industrial-scale packed-bed benzene sorption on activated carbon with temperature-swing regeneration by steam to investigate the influence of steam properties and regeneration strategy on total energy performance and breakthrough behaviour. It is shown that using saturated steam lowers both the steam mass and energy consumption during regeneration of a fixed amount of benzene, whereas using superheated steam returns the bed to a more fresh-like state after each regeneration stage. The most promising variation tried implies a 19% reduction in the energy consumption. Furthermore, the importance of accounting for the real industrial cycling conditions in the optimization of packed-bed adsorbers is highlighted. It is shown that the participation of different sections of the bed during adsorption varies with the regeneration strategy, but is never as localized as predicted from a model for a fresh bed without cycling. Finally, the present results also show that the effluent purity attained during regeneration increases when high-temperature saturated steam is used, e.g. a 60-degree increase in steam temperature raises the purity by 11%

    Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities

    Get PDF
    Interoception includes signals from inner organs and thin afferents in the skin, providing information about the body’s physiological state. However, the functional relationships between interoceptive submodalities are unclear, and thermosensation as skin-based interoception has rarely been considered. We used five tasks to examine the relationships among cardiac awareness, thermosensation, affective touch, and nociception. Thermosensation was probed with a classic temperature detection task and the new dynamic thermal matching task, where participants matched perceived moving thermal stimuli in a range of colder/warmer stimuli around thermoneutrality. We also examined differences between hairy and non-hairy skin and found superior perception of dynamic temperature and static cooling on hairy skin. Notably, no significant correlations were observed across interoceptive submodality accuracies (except for cold and pain perception in the palm), which indicates that interoception at perceptual levels should be conceptualised as a set of relatively independent processes and abilities rather than a single construct.Göran Gustafsson foundationSwedish Research CouncilEuropean Research Council under the European Union’s horizon 2020 research and innovation programme (SELF-UNITY)Marie Skłodowska-Curie Intra-European Individual Fellowship (HOMEOTHERMIC SELF)Accepte

    Effects of bed aging on temperature signals from fixed-bed adsorbers during industrial operation

    Get PDF
    The capacity of adsorber beds used in industrial-scale temperature-swing adsorption diminishes over time due to bed aging. Here, we present industrial data on the temperature signals from fixed-bed adsorbers using activated carbon designed to remove benzene and other impurities from the gas produced in biomass gasification. The aging of the adsorber beds proceeds due to irreversible adsorption of trace species and manifests itself via two simultaneous effects: a decrease in the availability of active adsorption sites over time and an increase in the overall thermal mass of the bed. Both effects tend to dampen the temperature response of the beds during operation, implying that they are easily confounded. Model descriptions of bed aging should account for both effects

    The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

    Get PDF
    Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field. The results showed that the most important parameter was the coverage area, and it was found to have a linear effect on the aerodynamic drag. Interestingly, parameters associated with the outer radial region of wheel (rim cover) were also found to be significant, along with the wheel depth of center (flatness). The flowfield measurements showed, again, that the coverage area had the most significant effect, with it directly affecting how much flow passes through the front rim and subsequently affecting features like the near-ground jetting vortex and vortices out of the wheelhouse. In addition, the coverage area also affected the pressure recovery at the base of the vehicle and the wheelhouse pressure. The effects of other parameters are also detailed in the paper. The effects of different coverage area at the front and rear rims on the drag coefficient were investigated, where having a high coverage at the rear reduced drag the most

    Strongly aligned molecules inside helium droplets in the near-adiabatic regime

    Full text link
    Iodine (I2_2) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by cos2θ2D\langle \cos^2 \theta_{2D} \rangle, is measured as a function of the laser intensity. The results are well described by cos2θ2D\langle \cos^2 \theta_{2D} \rangle calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a \sim 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of cos2θ2D\langle \cos^2 \theta_{2D} \rangle achieved in He droplets exceed 0.96.Comment: 11 pages, 8 figure

    Finite-volume method for industrial-scale temperature-swing adsorption simulations

    Get PDF
    We formulate a mathematical model for temperature-swing adsorption systems. A finite-volume method is derived for the numerical solution of the model equations. We specifically investigate the influence of the choice of spatial discretization scheme for the convective terms on the accuracy, convergence rate and general computational performance of the proposed method. The analysis is performed with the nonlinear Dubinin-Radushkevich isotherm representing benzene adsorption onto activated carbon, relevant for gas cleaning in biomass gasification.The large differences in accuracy and convergence between lower- and higher-order schemes for pure scalar advection are significantly reduced when using a non-linear isotherm. However, some of these differences re-emerge when simulating adsorption/desorption cycling. We show that the proposed model can be applied to industrial-scale systems at moderate spatial resolution and at an acceptable computational cost, provided that higher-order discretization is employed for the convective terms

    Reaction mechanism for methane-to-methanol in CU-SSZ-13: First-principles study of the Z2[Cu2O] and Z2[Cu2oh] motifs

    Get PDF
    As transportation continues to increase world-wide, there is a need for more efficient utilization of fossil fuel. One possibility is direct conversion of the solution gas bi-product CH4 into an energy-rich, easily usable liquid fuel such as CH3OH. However, new catalytic materials to facilitate the methane-to-methanol reaction are needed. Using density functional calculations, the partial oxidation of methane is investigated over the small-pore copper-exchanged zeolite SSZ-13. The reaction pathway is identified and the energy landscape elucidated over the proposed motifs Z2 [Cu2O] and Z2 [Cu2OH]. It is shown that the Z2[Cu2O] motif has an exergonic reaction path, provided water is added as a solvent for the desorption step. However, a micro-kinetic model shows that neither Z2 [Cu2O] nor Z2 [Cu2OH] has any notable activity under the reaction conditions. These findings highlight the importance of the detailed structure of the active site and that the most stable motif is not necessarily the most active

    On the roles of interstitial liquid and particle shape in modulating microstructural effects in packed-bed adsorbers

    Get PDF
    Several industrial applications use packed-bed reactors for heterogeneous processes with intermittent presence of interstitial liquid. One such example is steam-regenerated adsorption systems. Here, we computationally generate two randomly packed beds of the same voidage – one with spheres and one with cylinders – to study the role of particle shape in such a process. We analyze the geometrical characteristics and determine the flow, transport and reaction properties at the same driving pressure difference. We also establish the effect of liquid on these characteristics. The bed of spheres exhibits 69% higher permeability due to differences in microstructure, and its shorter retention time and lower specific surface yields lower conversion in a first-order heterogeneous reaction. However, at the same flow rate, the spheres could be expected to outperform the cylinders. The bed of cylinders exhibits more pronounced local concentration variations due to a dominance of smaller pores, which are not as readily accessible to the flow. The presence of interstitial liquid reduces the permeability and significantly changes the streamwise velocity distributions inside both beds, effectively homogenizing the geometries by filling up the smaller pores. The implications of the present findings for reduced-order modelling of packed-bed adsorbers are discussed
    corecore