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a b s t r a c t 

We formulate a mathematical model for temperature-swing adsorption systems. A finite-volume method 

is derived for the numerical solution of the model equations. We specifically investigate the influence of 

the choice of spatial discretization scheme for the convective terms on the accuracy, convergence rate and 

general computational performance of the proposed method. The analysis is performed with the nonlin- 

ear Dubinin-Radushkevich isotherm representing benzene adsorption onto activated carbon, relevant for 

gas cleaning in biomass gasification. 

The large differences in accuracy and convergence between lower- and higher-order schemes for pure 

scalar advection are significantly reduced when using a non-linear isotherm. However, some of these dif- 

ferences re-emerge when simulating adsorption/desorption cycling. We show that the proposed model 

can be applied to industrial-scale systems at moderate spatial resolution and at an acceptable computa- 

tional cost, provided that higher-order discretization is employed for the convective terms. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Separation processes account for roughly 10–15% of the world’s

nergy consumption ( Sholl and Lively, 2016 ). One common method

or removing gas phase components (such as volatile organic com-

ounds) from a gas mixture is adsorption onto an adsorbent bed,

sually activated carbon ( Yang et al., 2019 ). When the bed becomes

aturated with the adsorbing species (denoted the adsorbent ), it

ust be regenerated before it can be reused for adsorption. This

egeneration can be performed by increasing the temperature of

he gas passing through the bed, which causes desorption of the

dsorbent. This process scheme is referred to as temperature-swing

dsorption . Steam is often used as the heat transfer medium in the

esorption step. The steam consumption in an unoptimized sys-

em can be orders of magnitude higher than in an optimized one

 Schweiger and LeVan, 1993 ), indicating a need for numerical tools

hat allow for more efficient design, control and operation of these

ndustrial processes. 

The optimization of adsorption processes cycling between high

nd low temperatures requires robust numerical simulation models
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 Haghpanah et al., 2013 ). Most significantly, the physicochemical

ature of the adsorption process tends to produce sharp concen-

ration and temperature fronts that propagate through the system.

he sharpness of these fronts, in conjunction with the large size of

he equipment in many industrial applications where adsorption

olumns can be many meters wide and tall, poses great challenges

or many traditional numerical modeling techniques. More specif-

cally, the spatial resolution must be extremely fine to accurately

esolve a sharp front, leading to excessive computational costs for

any traditional spatial discretization schemes. 

Consequently, a range of different numerical frameworks

ave been applied to adsorption problems, including finite dif-

erences ( Carter and Wyszynski, 1983 ), orthogonal collocation

 Raghavan and Ruthven, 1983 ), finite elements ( Kikkinides and

ang, 1993 ), combinations thereof ( Schweiger and LeVan, 1993;

aczmarski et al., 1997 ), and finite volumes ( Webley and He, 20 0 0;

odd et al., 2001; Cruz et al., 2005 ). In recent years, the finite-

olume method has been identified as robust and stable for a wide

ange of adsorption systems ( Haghpanah et al., 2013 ), particularly

ncluding chromatographic applications ( Javeed et al., 2011; Medi

nd Amanullah, 2011 ). 

In finite volume methods, several methods have been proposed

o handle the sharp fronts involved in the adsorption dynamics.

igh-resolution total variation diminishing (TVD) methods have
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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been particularly successful in reducing nonphysical oscillations

around discontinuities while still capturing the smooth part of the

solution ( Haghpanah et al., 2013 ). The TVD family of schemes thus

manages to combine high-order accuracy with low-order stability,

and it does so by introducing flux limiters. For example, the van

Leer scheme has been shown to offer second-order accuracy in

smooth regions while avoiding oversharpening effects in analyses

of chromatographic problems ( Medi and Amanullah, 2011 ). 

However, most previous studies have focused primarily on

single-step adsorption and desorption dynamics of lab-scale sys-

tems. In addition, many models in the literature deal with

pressure-swing rather than temperature-swing adsorption, so that

the adsorber regeneration is accomplished by lowering the pres-

sure rather than by increasing the temperature. Temperature-

swing adsorption is in many ways fundamentally different to

pressure-swing adorption, and poses its own challenges to numer-

ical schemes, such as possible velocity oscillations due to gas ex-

pansion ( Schweiger and LeVan, 1993 ). Our main interest here is in

the construction and analysis of a methodology that can robustly

be applied to large adsorber beds, while maintaining enough com-

putational efficiency to allow cycling until industrial steady opera-

tional conditions are attained (the so-called cyclic steady state ). 

In the present work, we thus derive a mathematical model for

temperature-swing adsorption. The model is general in its formula-

tion, but in our own work primarily intended for application in gas

cleaning of producer gas from biomass gasification, where benzene

is the main adsorbate species, the bed consists of activated carbon

and the process is carried out at ambient pressure ( Thunman et al.,

2018 ). The emphasis is on the formulation of an accurate and ro-

bust finite-volume method for the solution of the proposed model

system. We investigate the performance, convergence, computa-

tional cost and temporal advancement towards cyclic steady state

for the proposed method. Our objective is in particular to assess

the effect of spatial resolution on the ability of different discretiza-

tion schemes to accurately resolve this approach towards cyclic

steady state in temperature-swing adsorption with a non-linear

isotherm. 

2. Governing equations 

Fig. 1 illustrates a fixed-bed adsorber system, where either

a process gas mixture or a hot inert purge gas flows through

a packed-bed reactor system. The model equations for our

temperature-swing adsorption system constitute a set of five cou-

pled partial differential equations describing the evolution of five

state variables: the gas phase temperature, the gas phase adsorbate

concentration, the solid phase temperature, the amount (loading)

of the adsorbed species on the solid phase and the gas phase ve-

locity. 

2.1. Main model - partial differential equations 

The gas phase total continuity equation is: 

∂ 

∂t 
( ερg ) + 

∂ 

∂x 
( ρg u ) + 

∂ 

∂t 
( ρb q b ) = 0 (1)

where ε is the packed-bed porosity (-), ρg is the gas phase density

(assumed to follow the ideal gas law) (kg/m 

3 ), u is the superficial

axial velocity (m/s), and q b is the loading of adsorbate species on

the solid phase (kg adsorbate/kg solid phase). t denotes time and

x is the axial spatial direction. 

The transport equation for the adsorbate species in the gas

phase is: 

∂ 

∂t 
( ερg ω b ) + 

∂ 

∂x 
( ρg uω b ) = 

∂ 

∂t 
( ρb q b ) (2)

where ω is the mass fraction of adsorbate species (-). 
b 
The adsorption of the adsorbate onto the solid adsorbent mate-

ial is described by: 

∂ 

∂t 
( ρb q b ) = ak 

(
c b,eq − ρg ω b 

)
(3)

here a is the specific surface of the adsorbent (m 

2 /m 

3 ), k is the

ass transfer coefficient between the gas and the solid (m/s), and

 b,eq is the equilibrium mass concentration given by the adsorption

sotherm (kg/m 

3 ). 

The gas phase energy balance equation is: 

∂ 

∂t 
( ερg C p,g T g ) + 

∂ 

∂x 
( ρg uC p,g T g ) = ah ( T s − T g ) (4)

here C p,g is the specific heat of the gas (J/kg,K), T g is the gas

hase temperature (K), h is the heat transfer coefficient between

he gas and the solid (W/m 

2 , K) and T s is the solid phase temper-

ture (K). 

The solid phase energy balance equation is: 

∂ 

∂t 

(
ρb C p,b T s 

)
= −ah ( T s − T g ) + �H ad 

∂ 

∂t 
( ρb q b ) (5)

here �H ad is the heat of adsorption (J/kg). 

It may be noted that no dispersion terms are included in

qs. (1) –(5) , as the Péclet numbers ( Pe = Ud /D eff, where U is the

verage superficial velocity, d is the diameter of the adsorption

olumn and D eff is the effective in-bed dispersion coefficient) at-

ained in industrial adsorption systems are typically much larger

han unity, implying that advective transport dominates over dis-

ersive transport. We will return in more detail to the rationale

ehind this approach in Section 5 of the paper. 

.2. Ancillary expressions - heat and mass transfer correlations 

For the bed heat and mass transfer coefficients, h and k , the

orrelation from Gnielinski (1978) is used, where: 

u = f (ε) Nu p (6)

ith 

f (ε) = 1 + 1 . 5 ( 1 − ε ) (7)

u p = 2 + 

(
Nu 

2 
lam 

+ Nu 

2 
turb 

)1 / 2 
(8)

nd 

u lam 

= 0 . 664 P r 1 / 3 
(

Re 

ε 

)1 / 2 

(9)

u turb = 

0 . 037 P r 
(

Re 
ε 

)0 . 8 

1 + 2 . 443 

(
P r 2 / 3 − 1 

)(
Re 
ε

)−0 . 1 
(10)

The convective heat transfer coefficient h can be calculated di-

ectly from Nu = hd p /k g , where d p is the equivalent diameter of

he adsorbent pellet material (m) and k g is the thermal conduc-

ivity of the gas phase (W/m,K). The mass transfer coefficient k is

hen obtained via the Chilton-Colburn mass-heat transport anal-

gy: 

Nu 

ReP r 1 / 3 
= 

Sh 

ReSc 1 / 3 
(11)

r, equvialently: 

 = 

D ab 

d p 
Nu 

(
Sc 

P r 

)1 / 3 

(12)

here D ab is the molecular diffusivity of the adsorbate in the gas

hase mixture, Sc = μ/ρg D ab is the Schmidt number, μ is the dy-

amic viscosity of the gas (m 

2 /s), and P r = C p,g μ/k g is the Prandtl

umber. 
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Fig. 1. Schematic illustration of an industrial temperature-swing adsorption system. a) A large packed-bed reactor (zoom-in) operates as an adsorber for one or more 

components in the gas phase. The gas phase mixture to be treated is introduced at the bottom during the adsorption phase. b) Before the bed is completely saturated with 

adsorbent, the inlet flow is directed into another bed and a hot inert purge gas flow (for example steam) is flushed in reverse mode. After the bed has been regerenerated, 

it may again act as an adsorber. 
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.3. Ancillary expressions - adsorption isotherm 

A mathematical model for adsorption relies on an adsorption

sotherm to predict the amount of adsorbate on the adsorbent as

 function of its pressure or concentration at constant tempera-

ure. The simplest possible isotherm is the linear Henry adsorp-

ion isotherm, which assumes that the amount of adsorbate on the

urface is proportional to the partial pressure in the gas. This as-

umption is known to deteriorate with surface inhomogeneity and

dsorbate interaction beyond the low-coverage limit. Instead, the

sotherm used in the current work is therefore the well-established

ubinin-Radushkevich isotherm ( Dubinin and Radushkevich, 1947;

oo and Hameed, 2010; Hu and Zhang, 2019 ): 

 = W 0 exp 

[ 

−
(

A 

βE 0 

)2 
] 

(13) 

here W is the amount of adsorbate on the adsorbent at equi-

ibrium (mg/g), β (-), E 0 (kJ/mol) and W 0 (mg/g) are adsorbent-

pecific constants, and 

 = RT s ln 

P 0 
P 

(14) 

here R is the universal gas constant (J/mol,K), and P 0 and P are

aturation pressure (Pa) and partial pressure (Pa) of the adsorbent,

espectively. This isotherm has been widely used for adsorption

n microporous carbonaceous materials, such as activated carbon

 Nguyen and Do, 2001 ). It was originally developed as a semi-

mpirical expression for adsorption isotherms based on the Polyani

otential theory of adsorption ( Polyani, 1932 ). The model parame-

ers in the isotherm expression reflect the physical and chemical

dsorbate-adsorbent interaction ( Chiang et al., 2001; Terzyk et al.,

005 ). Here, we choose to employ values representative of benzene

dsorption onto an industrially relevant activated carbon, resulting

n β = 1 . 0 , W 0 = 500 mg/g, E 0 = 14 . 0 kJ/mol and d p = 1 cm. The

aturation pressure P 0 is evaluated from the Antoine equation: 

og 10 ( P 0 ) = A − B 

T + C 
(15) 
here A = 4 . 01814 , B = 1203 . 835 and C = −53 . 226 are used (for T

n K and P 0 in bar). 

.4. Initial and boundary conditions 

At t = 0 , the state variables are assigned initial values, e.g. pre-

cribed solid and gas phase temperatures, q b = 0 kg/kg and ω b = 0 .

irichlet boundary conditions are prescribed for the state vari-

bles at the inlet boundary. Since there are no dispersion terms

ncluded in the model, the often-used Neumann boundary condi-

ion of zero gradient of the state variables at the bed outlet is not

eeded. More advanced boundary conditions employed in adsorp-

ion/desorption cycling are described later. 

. Finite volume method 

The finite volume method is suitable for solving the conser-

ation laws of Eqs. (1) –(5) . The method is inherently conserva-

ive and allows for the flexibility to freely include source terms to

he equations. Generally, the domain of interest is discretized into

ells of (possibly) different volumes and the simplification that any

uantity is constant within the cell is used. In the current imple-

entation, the values are stored at the cell center. The equations

re then integrated both in time and space over the volumes. Here,

he equations are spatially one-dimensional and the cell volumes

re kept equal with a constant normal area A , thus also the spatial

pacing is constant and reduced to a general �x . 

The general conservation equation for a general variable φ is: 

∂ 

∂t 
( ρφ) + 

∂ 

∂x 
( ρuφ) = S (16) 

here S represents a source term. 

The temporal term is discretized as: 
 

t 

∫ 
V 

∂ρφ

∂t 
d V d t = 

(
[ ρφ] 

n +1 − [ ρφ] 
n 
)
V i 

here the superscript n refers to the current time step, n + 1 to

he next timestep and V the volume of cell i . 
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The advective term is discretized as: ∫ 
t 

∫ 
V 

∂ρuφ

∂x 
d V d t = 

(
[ Aρuφy ] i +1 / 2 − [ Aρuφy ] i −1 / 2 

)
�t 

with �t being the time step and y denoting the time where the

term is evaluated. Setting y = n gives an explicit time discretization

while y = n + 1 an implicit one. In the current work, all terms are

taken implicitly when possible. For example, the upwind scheme

allows for an implicit discretization, hence when this scheme is

used the variable is taken implicitly. The van Leer scheme does not

allow an implicit discretization, hence the variable has to be taken

explicitly. As both u and φ are solved for in a linear matrix sys-

tem, they cannot both be implicitly taken into the matrix. Instead,

for Eqs. (2) and (4) , u is taken explicitly. 

When performing the discretization of the advective term, the

term [ A ρu φ] must be evaluated at the two faces i ± 1/2 separat-

ing the volumes at i ± 1. As the variables are stored in the cell

center, they must be interpolated to the face. For the explicit term

[ ρu ] i +1 / 2 that is done with linear interpolation as: 

[ ρu ] i +1 / 2 = 

˙ m i +1 / 2 = 

ρi u i + ρi +1 u i +1 

2 

The evaluation for the i − 1 / 2 face is done in the same fashion

and thus only a generic face f will be discussed in the following.

The procedure is the same for any face and, in fact, when assem-

bling the matrix to be solved, it is the faces that are being iterated

over, rather than the cells. 

Four different interpolation schemes for the variable φ are eval-

uated in this work. The first-order upwind scheme is compared to

three common high order/high resolution schemes: the ULTIMATE

QUICKEST, van Leer and MUSCL schemes. 

3.1. First-order upwind 

The first-order upwind scheme simply uses the value for φ
from the cell in the upwind direction of the flow, denoted C , i.e., 

φ f = φC 

where, 

 = 

{
i, if ˙ m i +1 / 2 ≥ 0 

i + 1 , else 

3.2. TVD Schemes 

The van Leer and MUSCL schemes used are TVD lim-

iters ( Sweby, 1984 ) applied to a central difference scheme

( van Leer, 1974 ). The van Leer scheme ( van Leer, 1974 ) is : 

˜ φ f = 

{
2 ̃

 φC −
(

˜ φC 

)2 
, 0 < 

˜ φC < 1 

˜ φC , else 
(17)

while the MUSCL scheme is: 

˜ φ f = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 ̃

 φC , 0 < 

˜ φC ≤ 1 / 4 

˜ φC + 

1 
4 
, 1 / 4 < 

˜ φC ≤ 3 / 4 

1 , 3 / 4 < 

˜ φC ≤ 1 

˜ φC , else 

(18)

where ˜ φx is the variable φ at a position x normalized as: 

˜ φx = 

φx − φU 

φD − φU 

(19)

and the indices C, U, D refer to the upwind, second upwind and

downwind cells with respect to the face. From Eq. (17) and (19) the

face value φf can be calculated after the upwind and downwind

cells have been identified. 
.3. ULTIMATE QUICKEST 

The ULTIMATE QUICKEST scheme is the ULTIMATE limiter

 Leonard, 1991 ) applied to the QUICKEST scheme. As for the van

eer and MUSCL schemes, information from the upwind, second

pwind and downwind nodes ( C, U, D ) is used. The scheme only

imits the QUICKEST discretization under certain circumstances.

ore specifically, if 

| CURV | 
| DEL | ≤ 0 . 6 (20)

here 

URV = φD − 2 φC + φU (21)

nd 

EL = φD − φU (22)

olds, the unconstrained QUICKEST scheme is used, and: 

f = 

1 

2 

( φD + φC ) − | c| 
2 

( φD − φC ) − 1 

6 

(
1 − CF L 2 

)
( CURV ) (23)

Where CFL is the local Courant number, ( CF L = u �t/ε�x when

 is the linear velocity). It is important to note that it is the linear

elocity through the column, and not the velocity of the adsorp-

ion front, which should be used to evaluate the Courant number

 Medi and Amanullah, 2011 ). If the criterion in Eq. (20) does not

old, but instead 

 CURV | ≥ | DEL | (24)

he first-order upwind scheme is used. Otherwise, the ULTIMATE

imiter is applied to the QUICKEST scheme, that is, φf is calculated

rom Eq. (23) but the following limits are enforced: 

C < φ f < min ( φREF , φD ) , if DEL > 0 (25)

nd 

ax ( φREF , φD ) < φ f < φC , if DEL < 0 (26)

here φREF = φU + ( φC − φU ) /c. 

.4. Source terms 

Any source term S in an equation is simply integrated as: 
 

t 

∫ 
V 

Sd V d t = SV i �t 

nd, as with the advective terms, the source term is taken implictly

hen convenient enough, otherwise it is explicitly evaluated. 

.5. Discretization of each equation 

In the current work, the different schemes are only applied to

he advection term of the adsorbate transport Eq. (2) . The advec-

ion term in the fluid energy equation is always discretized with

he upwind scheme, while special attention is paid to the dis-

retization of the total continuity Eq. (1) . Namely, to ensure con-

ervation, the interpolation of ρg u must be consistent between the

ifferent equations, and since the term is linearly interpolated in

he adsorbate and energy equation, it is also discretized the same

ay in the continuity equation. The procedure resembles a central

ifference scheme, with the exception that the density and velocity

re jointly interpolated as: 

 

ρ u ] = 

[ ρg u ] i + [ ρg u ] i +1 

i +1 / 2 2 
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Fig. 2. Profile of gas-phase adsorbate concentration at t = 0 . 5 τ after a step in the 

inlet concentration to the bed at t = 0 – comparison between different numerical 

schemes and degree of resolution (number of cells) for pure advection. The panels 

show (from left to right, top to bottom) the results obtained with the first-order 

upwind (UW), ULTIMATE QUICKEST (UQ), MUSCL and van Leer (VL) schemes. The 

different line colors indicate the different spatial resolutions (10, 30, 10 0, 30 0 and 

10 0 0 cells, respectively). 

Fig. 3. Profile of gas-phase adsorbate concentration at t = 10 τ during adsorption 

in an initially empty bed at isothermal conditions – comparison between different 

numerical schemes and degree of resolution for simultaneous adsorption and ad- 

vection. The panels show (from left to right, top to bottom) the results obtained 

with the first-order upwind (UW), ULTIMATE QUICKEST (UQ), MUSCL and van Leer 

(VL) schemes. The different line colors indicate the different spatial resolutions (10, 

30, 100, 300 and 1000 cells, respectively). 
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.6. Solution process 

The discretization is done for all conservation Eq. (1) - (5) .

owever, the conservation equations are coupled and several vari-

bles that are solved for appear in multiple equations, for exam-

le the term 

∂ 
∂t ( q b ρb ) . To solve for all variables simultaneously,

ll equations are assembled in the same matrix system, enabling

 coupled solution. The code for simulating the system is written

n C++ with a fully object-oriented layout. The properties depend-

ng on the solution variables ( ρg through the ideal gas law, h, k

nd c b,eq ) are all evaluated with values from time n . 

. Simulations of transport and adsorption 

Numerical simulations of adsorption problems are known to be

hallenging and time consuming due to the non-linearity of the

overning equations and the presence of strong temporal and spa-

ial gradients ( Webley and He, 20 0 0 ). More specifically, the solu-

ions are known to exhibit sharp fronts. These sharp fronts appear

ue to the advective nature of the system (high Péclet numbers)

nd are further significantly amplified by the nature of the ad-

orption process, which gives rise to a large source term on the

ight hand side of Eq. (3) that dominates the process. It is known

hat the unconditionally stable first-order upwind discretization of

he convective term (physically equivalent to the tanks-in-series

pproach Fogler, 2016 ) results in low accuracy due to numerical

mearing of the fronts ( Webley and He, 20 0 0; Haghpanah et al.,

013 ), whereas higher-order schemes such as QUICK are prone

o produce oscillatory results in the presence of sharp gradients

 Webley and He, 20 0 0 ). 

For this reason, we first establish the performance of the four

ifferent discretization schemes for the convective term for a pure

dvection case, in which a step change in the inlet concentration

rom c| z=0 = 0 to a constant value c in takes place at t = 0 with

 = 0 ∀ x as the initial condition. No interaction with the bed ma-

erial (adsorption/desorption) is activated in these simulations, i.e.
∂ 
∂t ( q b ρb ) = 0 . In the absence of physical and numerical diffusion,

he system response to this step change should constitute the pure

dvection of a sharp and distinct front in the c -profile from the in-

et to the outlet of the bed over a time equal to the mean residence

ime, τ = L/U, in the system. We choose to compare the concen-

ration profiles obtained with the different discretization schemes

t t = 0 . 5 τ, as illustrated in Fig. 2 . 

Several important observations can be made in Fig. 2 . First of

ll, it is clear that the first-order upwind scheme introduces sig-

ificant numerical dispersion, resulting in a failure to reproduce a

harp profile even at a resolution of 300 mesh points. ULTIMATE

UICKEST exhibits a better performance, but the MUSCL and van

eer schemes are even better, with very sharp fronts already at a

esolution of approximately 100 mesh points. 

We next turn our attention to the simulation of an adsorption

tep, in which an initially empty bed ( q b = 0 ∀ x ) is exposed to ad-

orbate at an inlet concentration of c in starting from time t = 0 .

ere, adsorption is activated, leading to a gradual build-up of ad-

orbate in the adsorbent over time. There are two main effects on

he adsorbate profile in the bed in comparison to the pure advec-

ion cases: firstly, the front is typically sharpened due to the action

f the adsorption source term ( Webley and He, 20 0 0 ), and sec-

ndly, the propagation velocity of the step in the profile through

he bed is now governed by the adsorption dynamics, and thus

ignificantly slower than the advection time scale τ . A compari-

on of the concentration profile characteristics obtained with the

ifferent discretization schemes is displayed in Fig. 3 . 

It can be seen from Fig. 3 that the previously identified trend

rom the advection test remains: the first-order upwind scheme

xhibits most numerical dispersion, whereas the van Leer and
USCL schemes again perform similarly and superior to the first-

rder scheme, and ULTIMATE QUICKEST falls somewhere in be-

ween. However, a more striking conclusion from the adsorption

est is the fact that the differences between the discretization

chemes are dramatically reduced. This situation may be more eas-

ly investigated by plotting the differences between the first-order

pwind and the van Leer schemes on top of each other, as in Fig. 4 .

he performance of the two schemes is dramatically different at

oth coarse and fine mesh resolutions for pure advection, whereas

he performance is similar already at the coarse resolution for the

dsorption case, and close to identical at the fine resolution. 
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Fig. 4. Comparison of first-order upwind (UW, red color) and van Leer (VL, blue 

color) discretization for advective transport (dashed lines) and advection with si- 

multaneous adsorption (solid lines) at isothermal conditions. Left: spatial resolution 

of 10 mesh points. Right: spatial resolution of 100 mesh points. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Convergence plot for scalar advection during mesh refinement for different 

discretization schemes – L 1 norm versus number of mesh points. UW = first-order 

upwind, UQ = ULTIMATE QUICKEST, VL = van Leer. 

Fig. 6. Convergence plot for advection with adsorption during mesh refinement for 

different discretization schemes – L 1 norm versus number of mesh points. UW = 

first-order upwind, UQ = ULTIMATE QUICKEST, VL = van Leer. 
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This very important observation is in contrast to previous find-

ings that suggest that at least 10–15 mesh points are needed

within the front itself, and that over 200 node points are needed

for the first-order upwind scheme to approach the prediction of a

higher-order scheme (the QUICK scheme with an adaptive smooth-

ing algorithm) at 30 node points ( Webley and He, 20 0 0 ). The main

difference between the current work and ( Webley and He, 20 0 0 )

is that we use a non-linear isotherm and physical mass transfer

rates, whereas the previous investigation was performed for a lin-

ear isotherm system with artificially increased mass transfer rates

to mimic the effect of the sharper fronts observed in non-linear

isotherm systems. The present results suggest that numerical mod-

eling of non-linear adsorption systems is less sensitive to numer-

ical dispersion from lower-order spatial discretization than previ-

ously believed. 

It is also of interest to study systematically the effect of the

mesh resolution on the performance of the different schemes.

Here, this is performed using the L 1 norm for the concentration

variable, defined as: 

L 1 = 

∑ N 
i =1 | c x − c re f,x | �x ∑ N 

i =1 c re f,x �x 
(27)

where N is the number of mesh points, c x is the concentration

at the node in position z = x, �x is the (uniform) mesh spacing,

and the subscript ref refers to the reference solution, which here is

taken to be the solution obtained with the van Leer scheme with

N = 10 0 0 . For mesh spacings different to that of the reference so-

lution, linear interpolation is used to obtain the corresponding val-

ues of c ref,x . Convergence plots for the advection and adsorption

test cases are shown in Figs. 5 and 6 , respectively. Due to the very

close similarities between MUSCL and van Leer, the MUSCL results

have been omitted from these figures. 

Overall, the reported L 1 -values are up to one order of magni-

tude larger for pure advection than for simultaneous adsorption

and advection. The slope of the L 1 norm for the first-order upwind

scheme for pure advection is approximately −0.5, whereas that of

ULTIMATE QUICKEST is −0.8 and that of van Leer −1.1. The con-

vergence is thus slowest for first-order upwind and fastest for van

Leer, as expected. For the cases with adsorption, the slopes change

to approximately −0.9 for all schemes, indicating that also the con-

vergence rate of the tested schemes becomes much more similar

for the adsorption process. 

We have also quantified the computational cost of the simu-

lations to find out how they scale with the mesh resolution, N .

The computational cost does not depend much on the discretiza-

tion scheme and scales as N 

2.3 for pure advection and N 

2.1 for

adsorption. This performance is better than the one reported by

Webley and He (20 0 0) for their pressure-swing adsorption model
 N 

2.5 ). It also indicates that the matrix solver, which uses LU de-

omposition and scales as N 

3 , contributes a significant part of the

omputational cost. Nevertheless, in the investigated range of N ,

he ancillary computations in the time evolution, being propor-

ional to N , still contribute a non-negligible amount to the overall

ost. 

. Numerical dispersion 

In addition to quantifying the convergence rate, it is also of in-

erest to quantify the numerical dispersion introduced by the more

iffusive schemes. This numerical dispersion, D num 

, can be ob-

ained by fitting the step response result to a convection-diffusion

quation with the axial dispersion D a , by equating D num 

= D a : 

∂c 

∂t 
+ U 

∂c 

∂x 
= D a 

∂ 2 c 

∂x 2 
(28)

The fitting is performed with the non-linear least squares trust

egion reflective algorithm lsqnonlin wrapped around the 1-D

DE solver pdepe in MATLAB R2017b. Here, pdepe uses 10 0 0

ode points and a time step corresponding to CF L = 10 −3 . The ini-

ial condition is c = 0 ∀ x and the boundary conditions are c| z=0 =
 in and 

∂c 
∂z 

| z= L = 0 . The equivalent number of tanks in series, n tanks ,

or a tanks-in-series model with the same axial dispersion can
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Table 1 

Numerical dispersion coefficients fitted from the step re- 

sponse test cases. 

Scheme Nodes D num [m 

2 /s] n tanks 

First-order upwind 10 6 . 0 · 10 −3 9 

First-order upwind 30 2 . 3 · 10 −3 23 

First-order upwind 100 7 . 3 · 10 −4 69 

First-order upwind 300 2 . 5 · 10 −4 203 

ULTIMATE QUICKEST 10 8 . 4 · 10 −4 60 

ULTIMATE QUICKEST 30 1 . 5 · 10 −4 343 

ULTIMATE QUICKEST 100 2 . 3 · 10 −5 2145 

ULTIMATE QUICKEST 300 1 . 0 · 10 −5 5001 
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Table 2 

Adsorption/desorption cycling program. 

Phase Duration Boundary conditions Inlet 

Adsorption 50 s c = 10 g/Nm 

3 Left 

T = 293 . 15 K 

Desorption 50 s c = 0 g/Nm 

3 Right 

T = 323 . 15 K 

Fig. 7. Convergence towards cyclic steady state (CSS) for adsorption/desorption cy- 

cling with van Leer discretization – snapshots of spatially resolved bed loadings 

after regeneration for cycles 2–20. The cycle number increases in the direction of 

the arrow. 
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hen be estimated from the fitted D a via ( Fogler, 2016 ): 

 tanks ≈
UL 

2 D a 
+ 1 (29) 

It is also of interest to compare the numerical dispersion with

he actual physical dispersion expected for the flow through the

dsorber bed. An effective packed-bed dispersion coefficient, D eff,

an be estimated from Wakao and Kaguei (1982) : 

 e f f = 0 . 8 D ab + 

1 

2 

Ud p 

ε 
(30)

For the current conditions, D AB ≈ 8 · 10 −6 m 

2 /s ( Gustafson and

ickhut, 1994 ) and d p = 1 cm, resulting in D e f f ≈ 10 −3 m 

2 /s. For

ndustrial applications where smaller particle diameters are some-

imes employed, D eff can go down towards 10 −4 m 

2 /s. 

Table 1 shows the obtained numerical dispersion coefficients

rom the step response test simulations. Results are given for first-

rder upwind and ULTIMATE QUICKEST, as the low dispersion co-

fficients obtained for the van Leer and MUSCL schemes cause os-

illations in the solution procedure for pdepe (for example, our

esults for the van Leer scheme at a mesh resolution of 300 mesh

oints become even lower than the molecular diffusivity). 

It is clear that the numerical dispersion attained at a low

o moderate spatial resolution (10–30 mesh points) with a high-

esolution scheme is of the same order of magnitude as the ex-

ected effective physical dispersion in the bed. This observation

ndicates that the numerics contribute a diffusive effect that, for

he relevant industrial conditions investigated here, is of the same

rder of magnitude as the physical effect that would have re-

ulted from adding dispersive terms to the model equations. We

hus conclude that the in-bed dispersion may to a first approxi-

ation be indirectly accounted for via the numerical dispersion, in

he spirit of e.g. implicit Large Eddy Simulation for turbulent flow

 Grinstein et al., 2007 ). In addition, as the performance of different

iscretization schemes becomes more similar at adsorption condi-

ions, this methodology is likely to be acceptable independent of

he actual scheme chosen. 

. Adsorption/desorption cycles and cyclic steady state (CSS) 

Industrial gas cleaning by adsorption proceeds by alternation

etween two modes of operation: an adsorption phase followed by

 desorption phase. During the adsorption phase, the incoming gas

ixture may contain non-zero concentrations of the adsorbate(s),

hereby the bed is slowly saturated. At some point before break-

hrough occurs (that is, before the outlet adsorbate concentration

ncreases above some threshold value), the bed is purged by an

nert gas mixture, which may enter either from the inlet or from

hat was the outlet during the adsorption phase. In temperature-

wing adsorption, as studied here, the inert purge gas during this

econd phase has a higher temperature, which shifts the equilib-

ium adsorbate concentration that the adsorbent can hold, causing

esorption to occur. The desorption process lasts until enough ad-
orbate has been removed from the bed, and the bed has been

egenerated and is able to adsorb again. 

If the inlet boundary conditions are altered repeatedly accord-

ng to an adequately chosen cycling program in this way, the adsor-

er column may approach a state where the state vector (concen-

rations, loadings and temperature) returns identically at the end

f a cycle to its value at the start of the same cycle ( Todd et al.,

001 ). This is a mathematical definition of a cyclic steady state

CSS). In adsorption modeling, studying the process from an ini-

ially clean bed until cyclic steady state is important for many rea-

ons. One is that the concentration profiles and column dynamics

ay operate in entirely different mass transfer regimes as com-

ared to the simple adsorption step onto a clean bed during cy-

ling ( Webley and He, 20 0 0 ), which implies that CSS assessment

s a necessary aspect of any investigation into numerical adsorp-

ion modeling. It is the functionality and behavior at CSS that is

ndustrially relevant, hence the appropriate initial conditions for

he simulations to be industrially relevant must reflect the CSS

 Gautier et al., 2018 ). Additionally, the cyclic steady state condition

s the one that must be known for the actual process to be evalu-

ted in a quantitative manner ( Haghpanah et al., 2013 ). Finally, the

yclic steady state can be computationally expensive to predict –

specially if the process is nonisothermal, where the slow thermal

ynamics of the system may disguise large effects that accumulate

ver many cycles – leading to that the final column profiles are

ppreciably different from the initially evolving ones ( Todd et al.,

001 ). 

For these reasons, we study the performance of the proposed

odel during adsorption/desorption cycling according to the cy-

ling program given in Table 2 . The velocity during both phases

s 0.1 m/s, and the bed is regenerated from the outlet toward the

nlet (reversed flow), as in common industrial practice. 

In Fig. 7 , the approach towards cyclic steady state is illustrated

or the bed loading in a simulation with van Leer discretization

nd 100 mesh points. It is seen that more than a half of the bed

s completely regenerated (free from adsorbate) starting from the
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Fig. 8. Convergence towards cyclic steady state (CSS) – the total integrated bed 

loading ( Q b ) after regeneration as a function of cycle number. Two discretization 

schemes are compared (the first-order upwind scheme (UW, red lines) and the van 

Leer scheme (VL, blue lines)) at two different spatial resolutions (30 cells (dashed 

lines) and 100 cells (solid lines)). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Final spatially resolved bed loading profiles at cyclic steady state as a func- 

tion of the discretization scheme and the mesh spacing. Two discretization schemes 

are compared (the first-order upwind scheme (UW, red lines) and the van Leer 

scheme (VL, blue lines)) at two different spatial resolutions (30 cells (dashed lines) 

and 100 cells (solid lines)). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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rightmost boundary, whereas the first 15% is completely saturated.

The intermediate loading profile changes with every cycle, but it

seems to converge towards a final steady condition as the number

of cycles increases. In the industrial setting, knowledge about this

steady condition is crucial for reaching optimal performance and

minimized energy consumption, but also to assess bed ageing. In

the process of cleaning the gas produced in biomass gasification

from benzene, for example, low concentrations of impurities such

as napthalene may adsorb irreversibly to the carbon and lower the

capacity of the beds over time. The specifics of such phenomena

will depend on the cyclic steady state of the beds, highlighting the

importance of being able to accurately and robustly predict the in-

dustrial cycling behaviour already in the design process. 

To arrive at an evaluation of the performance of a given adsorp-

tion system setup and operation, we are normally interested in a

global performance indicator. One such indicator is the total inte-

grated bed loading after regeneration, defined as: 

Q b = 

∫ z= L 

z=0 

q b (z) dz (31)

In an industrial application, one could for example employ multi-

objective optimization to identify a cycling program that minimizes

Q b together with the energy consumption associated with the re-

generation step ( Haghpanah et al., 2013; Xu et al., 2019 ). 

For the remaining discussion, we choose to contrast the per-

formance of the first-order upwind scheme (as a representative

of traditional tanks-in-series modelling for adsorption processes)

with that of the van Leer scheme (as a representative of a high-

resolution scheme). Fig. 8 illustrates how Q b is changing as a func-

tion of the number of cycles in the adsorption/desorption pro-

cess for these two different discretization schemes at two different

mesh resolutions (30 and 100 mesh points). Interestingly, it can be

observed that the convergence towards the cyclic steady state is

slower in the first-order upwind simulation with 30 mesh points

than in the other three cases. Moreover, the two van Leer simula-

tions converge towards the same value of Q b at cyclic steady state,

whereas this global prediction from the first-order upwind simu-

lations changes with spatial resolution. In other words, despite the

surprisingly good performance of first-order upwinding in the ad-

sorption single step test cases, the performance in this more real-

istic and comprehensive test case identifies significant advantages

of using higher-order schemes. 
However, even if the van Leer scheme allows for a fast and ef-

cient capturing of the global performance indicator already at a

esolution of 30 node points, a detailed look into the final bed

oading profiles at cyclic steady state reveals that the distribution

f the adsorbate is still changing somewhat with the spatial reso-

ution (cf. Fig. 9 ). For both the van Leer and the first-order upwind

chemes, the bed loading profile attains a sharper corner at the

nd of the fully loaded section, along with a decrease in the load-

ng in the region closest to the fully regenerated part of the bed. 

The computational cost for an adsorption/desorption cycle

cales approximately as N 

2.2 , indicating that the performance is on

ar with that observed for the advection and adsorption step test

ases. At a resolution of 30 mesh points, it takes approximately one

econd of real time to advance the simulation time ten seconds. 

The overall analysis points to that approximately 30 mesh

oints are sufficient to resolve the convergence towards a cyclic

teady state with an accuracy similar to that obtained with much

ner spatial resolution. This observation is in line with the conclu-

ion from Haghpanah et al. (2013) for investigations of CSS attain-

ent in pressure-swing adsorption simulations. Moreover, at this

evel of resolution, the numerical dispersion present in the numer-

cal model is of the same order of magnitude as the physical axial

ispersion in the bed, further underlining the applicability of this

esh resolution for simulations of industrial adsorption units. 

. Conclusions 

We present a finite-volume method for numerical simula-

ions of industrial temperature-swing adsorption processes. It is

hown that for an adsorption process characterized by a non-

inear Dubinin-Radushkevich isotherm, valid for benzene adsorp-

ion onto activated carbon, the effect of the spatial discretization

cheme on the attainable accuracy in the resolution of sharp con-

entration fronts is much less pronounced than for pure advection.

oth the accuracy and convergence rate of the first-order upwind

cheme (or, equivalently, a tanks-in-series approach) become simi-

ar to that of higher-order TVD schemes (e.g. van Leer) for simple

dsorption step test cases. However, during adsorption/desorption

ycling towards a cyclic steady state, the higher-order scheme out-

erforms the first-order upwind one in both the rate of conver-

ence of a global performance indicator, as well as in the sensi-

ivity of the spatially resolved profiles to the mesh resolution em-
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loyed. Robust and accurate predictions of the cyclic steady state

re required in the design of industrial temperature-swing adsorp-

ion systems if the long-term behaviour is also to be properly as-

essed. 

The numerical dispersion introduced by the ULTIMATE QUICK-

ST scheme (as a representative of a typical higher-order scheme)

t a moderate mesh resolution (30 node points) is shown to be

f the same order of magnitude as the expected axial dispersion

n the flow through the packed bed, so that the proposed model

ormulation without dispersion terms may produce solutions that

mplicitly account for physical in-bed dispersion. As the use of as

ew as 30 node points is shown to be acceptable also for adsorp-

ion/desorption cycling with a higher-order scheme, this level of

patial resolution can be recommended for numerical simulations

f industrial adsorption processes with the proposed model. 

In conclusion, the presented model is shown to be able to

eproduce the characteristics of packed-bed adsorption systems

uring industrial adsorption/desorption cycling at moderate spa-

ial resolution and at good computational efficiency. The model

herefore fulfills the requirements necessary for robust and ac-

urate numerical simulations of non-linear large-scale industrial

emperature-swing adsorption systems, such as commonly used

as cleaning equipment in biomass gasification. 
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