111 research outputs found

    <i>In situ</i> investigation of controlled polymorphism in mechanochemistry at elevated temperature†

    Get PDF
    Mechanochemistry routinely provides solid forms (polymorphs) that are difficult to obtain by conventional solution-based methods, making it an exciting tool for crystal engineering. However, we are far from identifying the full scope of mechanochemical strategies available to access new and potentially useful solid forms. Using the model organic cocrystal system of nicotinamide (NA) and pimelic acid (PA), we demonstrate with variable temperature ball milling that ball milling seemingly decreases the temperature needed to induce polymorph conversion. Whereas Form I of the NA:PA cocrystal transforms into Form II at 90 °C under equilibrium conditions, the same transition occurs as low as 65 °C during ball milling: a ca 25 °C reduction of the transition temperature. Our results indicate that mechanical energy provides a powerful control parameter to access new solid forms under more readily accessible conditions. We expect this ‘thermo-mechanical’ approach for driving polymorphic transformations to become an important tool for polymorph screening and manufacturing

    Nanocrystalline and stacking-disordered β-cristobalite AlPO4: the now deciphered main constituent of a municipal sewage sludge ash from a full-scale incineration facility

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on ‘as received’ SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators.Peer Reviewe

    Characterization of engraftment dynamics in myelofibrosis after allogeneic hematopoietic cell transplantation including novel conditioning schemes.

    Get PDF
    INTRODUCTION Myelofibrosis (MF) is a rare hematopoietic stem cell disorder progressing to bone marrow (BM) failure or blast phase. Allogeneic hematopoietic cell transplantation (HCT) represents a potentially curative therapy for a limited subset of patients with advanced MF, who are eligible, but engraftment in MF vs. AML is delayed which promotes complications. As determinants of engraftment in MF are incompletely characterized, we studied engraftment dynamics at our center. METHODS A longitudinal cohort of 71 allogeneic HCT performed 2000-2019 with >50% after 2015 was evaluated. RESULTS Median time to neutrophil engraftment ≥0.5x109/l was +20 days post-transplant and associated with BM fibrosis, splenomegaly and infused CD34+ cell number. Engraftment dynamics were similar in primary vs. secondary MF and were independent of MF driver mutations in JAK2, CALR and MPL. Neutrophil engraftment occurred later upon haploidentical HCT with thiotepa-busulfan-fludarabine conditioning, post-transplant cyclophosphamide and G-CSF (TBF-PTCy/G-CSF) administered to 9.9% and 15.6% of patients in 2000-2019 and after 2015, respectively. Engraftment of platelets was similarly delayed, while reconstitution of reticulocytes was not affected. CONCLUSIONS Since MF is a rare hematologic malignancy, this data from a large number of HCT for MF is essential to substantiate that later neutrophil and platelet engraftment in MF relates both to host and treatment-related factors. Observations from this longitudinal cohort support that novel conditioning schemes administered also to rare entities such as MF, require detailed evaluation in larger, multi-center cohorts to assess also indicators of long-term graft function and overall outcome in patients with this infrequent hematopoietic neoplasm undergoing allogeneic transplantation

    Tandem X-ray absorption spectroscopy and scattering forin situtime-resolved monitoring of gold nanoparticle mechanosynthesis

    Get PDF
    Current time-resolvedin situapproaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g.monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials.Peer reviewe

    Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles

    Get PDF
    Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis.Peer reviewe

    Leaf reflectance spectra capture the evolutionary history of seed plants

    Get PDF
    Leaf reflection spectra have been increasingly used to assess plant diversity. However, we do not yet understand how spectra vary across the tree of life or how the evolution of leaf traits affects the differentiation of spectra among species and lineages. Here we describe a framework that integrates spectra with phylogenies and apply it to aglobal dataset of over 16 000 leaf-level spectra (400–2400 nm) for 544 seed plant species. We test for phylogenetic signal in spectra, evaluate their ability to classify lineages, and characterize their evolutionary dynamics. We show that phylogenetic signal is present in leaf spectra but that the spectral regions most strongly associated with the phylogeny vary among lineages. Despite among-lineage heterogeneity, broad plant groups, orders, and families can be identified from reflectance spectra. Evolutionary models also reveal that different spectral regions evolve at different rates and under different constraint levels, mirroring the evolution of their underlying traits. Leaf spectra capture the phylogenetic history of seed plants and the evolutionary dynamics of leaf chemistry and structure. Consequently, spectra have the potential to provide breakthrough assessments of leaf evolution and plant phylogenetic diversity at global scales

    Field-induced quantum critical point in the new itinerant antiferromagnet Ti3_3Cu4_4

    Full text link
    New phases of matter emerge at the edge of magnetic instabilities. In local moment systems, such as heavy fermions, the magnetism can be destabilized by pressure, chemical doping, and, rarely, by magnetic field, towards a zero-temperature transition at a quantum critical point (QCP). Even more rare are instances of QCPs induced by pressure or doping in itinerant moment systems, with no known examples of analogous field-induced \textit{T} = 0 transitions. Here we report the discovery of a new itinerant antiferromagnet with no magnetic constituents, in single crystals of Ti3_3Cu4_4 with TNT_N = 11.3 K. Band structure calculations point to an orbital-selective, spin density wave ground state, a consequence of the square net structural motif in Ti3_3Cu4_4. A small magnetic field, HCH_C = 4.87 T, suppresses the long-range order via a continuous second-order transition, resulting in a field-induced QCP. The magnetic Gr\"uneisen ratio diverges as H→HCH \rightarrow H_C and T→0T\rightarrow0, with a sign change at HCH_C and T−1T^{-1} scaling at H = HCH~=~H_C, providing evidence from thermodynamic measurements for quantum criticality for H∥cH \parallel c. Non-Fermi liquid (NFL) to Fermi liquid (FL) crossover is observed close to the QCP, as revealed by the power law behavior of the electrical resistivity

    Dietary intake of plant- and animal-derived protein and incident cardiovascular diseases:the pan-European EPIC-CVD case–cohort study

    Get PDF
    Background: Epidemiological evidence suggests that a potential association between dietary protein intake and cardiovascular disease (CVD) may depend on the protein source, that is, plant- or animal-derived, but past research was limited and inconclusive. Objectives: To evaluate the association of dietary plant- or animal-derived protein consumption with risk of CVD, and its components ischemic heart disease (IHD) and stroke. Methods: This analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC)-CVD case–cohort study included 16,244 incident CVD cases (10,784 IHD and 6423 stroke cases) and 15,141 subcohort members from 7 European countries. We investigated the association of estimated dietary protein intake with CVD, IHD, and stroke (total, fatal, and nonfatal) using multivariable-adjusted Prentice-weighted Cox regression. We estimated isocaloric substitutions of replacing fats and carbohydrates with plant- or animal-derived protein and replacing food-specific animal protein with plant protein. Multiplicative interactions between dietary protein and prespecified variables were tested. Results: Neither plant- nor animal-derived protein intake was associated with incident CVD, IHD, or stroke in adjusted analyses without or with macronutrient-specified substitution analyses. Higher plant-derived protein intake was associated with 22% lower total stroke incidence among never smokers [HR 0.78, 95% confidence intervals (CI): 0.62, 0.99], but not among current smokers (HR 1.08, 95% CI: 0.83, 1.40, P-interaction = 0.004). Moreover, higher plant-derived protein (per 3% total energy) when replacing red meat protein (HR 0.52, 95% CI: 0.31, 0.88), processed meat protein (HR 0.39, 95% CI: 0.17, 0.90), and dairy protein (HR 0.54, 95% CI: 0.30, 0.98) was associated with lower incidence of fatal stroke.Conclusion: Plant- or animal-derived protein intake was not associated with overall CVD. However, the association of plant-derived protein consumption with lower total stroke incidence among nonsmokers, and with lower incidence of fatal stroke highlights the importance of investigating CVD subtypes and potential interactions. These observations warrant further investigation in diverse populations with varying macronutrient intakes and dietary patterns.</p

    Nasal Colonization of Humans with Methicillin-Resistant Staphylococcus aureus (MRSA) CC398 with and without Exposure to Pigs

    Get PDF
    Background: Studies in several European countries and in North America revealed a frequent nasal colonization of livestock with MRSA CC398 and also in humans with direct professional exposure to colonized animals. The study presented here addresses the question of further transmission to non exposed humans. Methods: After selecting 47 farms with colonized pigs in different regions of Germany we sampled the nares of 113 humans working daily with pigs and of their 116 non exposed family members. The same was performed in 18 veterinarians attending pig farms and in 44 of their non exposed family members. For investigating transmission beyond families we samples the nares of 462 pupils attending a secondary school in a high density pig farming area. MRSA were detected by direct culture on selective agar. The isolates were typed by means of spa-sequence typing and classification of SCCmec elements. For attribution of spa sequence types to clonal lineages as defined by multi locus sequence typing we used the BURP algorithm. Antibiotic susceptibility testing was performed by microbroth dilution assay. Results: At the farms investigated 86% of humans exposed and only 4.3% of their family members were found to carry MRSA exhibiting spa-types corresponding to clonal complex CC398. Nasal colonization was also found in 45% of veterinarians caring for pig farms and in 9% of their non exposed family members. Multivariate analysis revealed that antibiotic usage prior to sampling beard no risk with respect to colonization. From 462 pupils only 3 were found colonized, all 3 were living on pig farms. Conclusion: These results indicate that so far the dissemination of MRSA CC398 to non exposed humans is infrequent and probably does not reach beyond familial communities
    • …
    corecore