63 research outputs found

    Potential application of tetrapleura tetraptera and hibiscus sabdariffa (Malvaceae) in designing highly flavoured and bioactive pito with functional properties

    Get PDF
    Sorghum beer (pito) is an indigenous alcoholic beverage peculiar to northern Ghana and parts of other West African countries. It is overwhelmed with calories, essential amino acids (such as lysine, etc.), B-group vitamins, and minerals. In recent years, there has been a growing demand for highly flavoured yet functional pito in Ghana; however, the local producers lack the prerequisite scientific expertise in designing such products. We propose the utilization of Tetrapleura tetraptera (TT) and Hibiscus sabdariffa (HS) as cheap and readily available materials in designing functional flavoured pito. The addition of TT and HS would not alter the fermentation profile but rather augment the starter with nutrients, thus improving the fermentation performance and shelf life of the final pito. In vitro and in vivo studies provide substantive evidence of antioxidant, nephro-and hepato-protective, renal/diuretic effect, anticholesterol, antidiabetic, and antihypertensive effects among others of the TT and HS, hence enriching the pito with health-promoting factors and consequently boosting the health of the consumer. Herein, we summarise the phytochemical, biological, pharmacological, and toxicological aspects of TT and HS as well as the technology involved in brewing the novel bioactive-flavoured pito. In addition, we also report the incidence of heavy metal in conventional pito. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.University of OtagoP.A. is grateful to the University of Otago for support via the University of Otago Doctoral Scholarship

    HIV/SARS-CoV-2 coinfection: A global perspective

    Full text link
    Since its first appearance in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread throughout the world and has become a global pandemic. Several medical comorbidities have been identified as risk factors for coronavirus disease 2019 (COVID-19). However, it remains unclear whether people living with human immunodefeciency virus (PLWH) are at an increased risk of COVID-19 and severe disease manifestation, with controversial suggestion that HIV-infected individuals could be protected from severe COVID-19 by means of antiretroviral therapy or HIV-related immunosuppression. Several cases of coinfection with HIV and SARS-CoV-2 have been reported from different parts of the globe. This review seeks to provide a holistic overview of SARS-CoV-2 infection in PLWH. © 2020 Wiley Periodicals LL

    PRODUCTION AND ANALYSIS OF BEER SUPPLEMENTED WITH CHLORELLA VULGARIS POWDER

    Get PDF
    The microalgae Chlorella vulgaris is a cheap source of nutrients and bioactive compounds, and thus is used in many interventional studies. This study evaluated the potential effects of C. vulgaris powder on fermentation parameters; sensory, phytochemical, and antioxidant activity; and the abundance of volatile organic compounds (VOCs) of treated versus control beers. A German Pilsner-style lager beer (GPB) was brewed and supplemented with C. vulgaris at various levels (3.3, 5, and 10 g/L) after primary fermentation. The apparent °Brix and pH was used to monitor the progress of fermentation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) was used to measure the antioxidant activity of beers. Addition of C. vulgaris increased the concentration of total polyphenols, total flavonoids, and antioxidant activity of treated beers (CGB) compared to the control (GPB). Treatment had no effects (p > 0.05) on higher alcohols such as 3-methyl-1-butanol, 2-hexanol, and phenylethyl alcohol. An increase in the concentration of C. vulgaris had no significant effects on sensory perception of enriched beers. The results showed that C. vulgaris could be used as a potential ingredient for designing functional beer with improved health benefits. © 2022 by the authors.Ministry of Education and Science of the Russian Federation, MinobrnaukaThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged

    Ginger Beer: An Overview of Health Benefits and Recent Developments

    Full text link
    Since time immemorial, ginger has been widely used as a food spice, providing aromatic odor and pungent taste, and as a medicinal plant, with various therapeutic effects such as antioxidant, anti-inflammatory, and analgesic, among others. It has long been an integral constituent of most herbal medicines in Africa, China and India. Its medicinal properties are largely attributed to its outstanding amount of phenolics which include gingerols, paradols, zingerones, and many others. With consumer preference gradually and remarkably shifting from high-calorie towards low-calorie and functional beverages, the demand for ginger beer is flourishing at a faster rate. Currently, the ginger beer market is dominated by the United States. The demand for ginger beer is, however, debilitated by using artificial ingredients. Nonetheless, the use of natural ginger extract enriches beer with putative bioactive phytoconstituents such as shagaol, gingerone, zingerone, ginger flavonoids and essential oils, as well as essential nutritional components including proteins, vitamins and minerals, to promote general wellbeing of consumer. This paper presents an overview of the phytoconstituents of ginger as well as the overall biological activities they confer to the consumer. In addition, the market trend as well as the production technology of ginger beer using natural ginger extract is described here. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Dialogue games for explaining medication choices

    Get PDF
    SMT solvers can be used efficiently to search for optimal paths across multiple graphs when optimising for certain resources. In the medical context, these graphs can represent treatment plans for chronic conditions where the optimal paths across all plans under consideration are the ones which minimize adverse drug interactions. The SMT solvers, however, work as a black-box model and there is a need to justify the optimal plans in a human-friendly way. We aim to fulfill this need by proposing explanatory dialogue protocols based on computational argumentation to increase the understanding and trust of humans interacting with the system. The protocols provide supporting reasons for nodes in a path and also allow counter reasons for the nodes not in the graph, highlighting any potential adverse interactions during the dialogue.Postprin

    The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q Needs

    Full text link
    AI solutions seem to appear in any and all application domains. As AI becomes more pervasive, the importance of quality assurance increases. Unfortunately, there is no consensus on what artificial intelligence means and interpretations range from simple statistical analysis to sentient humanoid robots. On top of that, quality is a notoriously hard concept to pinpoint. What does this mean for AI quality? In this paper, we share our working definition and a pragmatic approach to address the corresponding quality assurance with a focus on testing. Finally, we present our ongoing work on establishing the AIQ Meta-Testbed.Comment: Accepted for publication in the Proc. of the Software Quality Days 2021, Vienna, Austri

    The Importance of Research on the Origin of SARS-CoV-2

    Get PDF
    The origin of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virus causing the COVID-19 pandemic has not yet been fully determined. Despite the consensus about the SARS-CoV-2 origin from bat CoV RaTG13, discrepancy to host tropism to other human Coronaviruses exist. SARS-CoV-2 also possesses some differences in its S protein receptor-binding domain, glycan-binding N-terminal domain and the surface of the sialic acid-binding domain. Despite similarities based on cryo-EM and biochemical studies, the SARS-CoV-2 shows higher stability and binding affinity to the ACE2 receptor. The SARS-CoV-2 does not appear to present a mutational “hot spot” as only the D614G mutation has been identified from clinical isolates. As laboratory manipulation is highly unlikely for the origin of SARS-CoV-2, the current possibilities comprise either natural selection in animal host before zoonotic transfer or natural selection in humans following zoonotic transfer. In the former case, despite SARS-CoV-2 and bat RaTG13 showing 96% identity some pangolin Coronaviruses exhibit very high similarity to particularly the receptor-binding domain of SARS-CoV-2. In the latter case, it can be hypothesized that the SARS-CoV-2 genome has adapted during human-to-human transmission and based on available data, the isolated SARS-CoV-2 genomes derive from a common origin. Before the origin of SARS-CoV-2 can be confirmed additional research is required
    corecore