58 research outputs found
アルコール/アルデヒド脱水素酵素による直接電子移動型カスケード反応系の開発
京都大学新制・課程博士博士(農学)甲第24664号農博第2547号新制||農||1098(附属図書館)学位論文||R5||N5445(農学部図書室)京都大学大学院農学研究科応用生命科学専攻(主査)教授 白井 理, 教授 菅瀬 謙治, 教授 三芳 秀人学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDGA
Direct electron transfer-type bioelectrocatalysis of redox enzymes at nanostructured electrodes
Direct electron transfer (DET)-type bioelectrocatalysis, which couples the electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects that has been studied over the past few decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by the protein engineering approach for the DET-type reaction. This review summarizes the recent progresses in this field of the research while considering the importance of nanostructure of electrodes as well as redox enzymes. This review also describes the basic concepts and theoretical aspects of DET-type bioelectrocatalysis, the significance of nanostructures as scaffolds for DET-type reactions, protein engineering approaches for DET-type reactions, and concepts and facts of bidirectional DET-type reactions from a cross-disciplinary viewpoint
Development Perspective of Bioelectrocatalysis-Based Biosensors
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination
Direct electron transfer-type bioelectrocatalysis by membrane-bound aldehyde dehydrogenase from Gluconobacter oxydans and cyanide effects on its bioelectrocatalytic properties
The bioelectrocatalytic properties of membrane-bound aldehyde dehydrogenase (AlDH) from Gluconobacter oxydans NBRC12528 were evaluated. AlDH exhibited direct electron transfer (DET)-type bioelectrocatalytic activity for acetaldehyde oxidation at several kinds of electrodes. The kinetic and thermodynamic parameters for bioelectrocatalytic acetaldehyde oxidation were estimated based on the partially random orientation model. Moreover, at the multi-walled carbon nanotube-modified electrode, the coordination of CN‾ to AlDH switched the direction of the DET-type bioelectrocatalysis to acetate reduction under acidic conditions. These phenomena were discussed from a thermodynamic viewpoint
Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish (Icosteus aenigmaticus) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals
How do seals swim? Swimming behavior constrained by biomechanical and ecological factors
第3回極域科学シンポジウム/第34回極域生物シンポジウム 11月26日(月) 国立極地研究所 3階ラウン
Changes in foraging depth trigger diurnal cycles of swim speed in northern elephant seals
第6回極域科学シンポジウム[OB] 極域生物圏11月16日(月) 国立極地研究所1階交流アトリウ
Body condition changes at sea: onboard calculation and telemetry of body density in diving animals
This study was supported by grants from the Office of Naval Research N00014-18-1-2822, DoD SERDP contract W912HQ20C0056, IPEV (Institut Paul Emile Victor) under the Antarctic research program 109 (C. Barbraud) and 1201 (C. Gilbert & C. Guinet), and CNES-TOSCA as part of the SNO-MEMO.The ability of marine mammals to accumulate sufficient lipid energy reserves is vital for mammals' survival and successful reproduction. However, long-term monitoring of at-sea changes in body condition, specifically lipid stores, has only been possible in elephant seals performing prolonged drift dives (low-density lipids alter the rates of depth change while drifting). This approach has limited applicability to other species. Using hydrodynamic performance analysis during transit glides, we developed and validated a novel satellite-linked data logger that calculates real-time changes in body density (∝lipid stores). As gliding is ubiquitous amongst divers, the system can assess body condition in a broad array of diving animals. The tag processes high sampling rate depth and three-axis acceleration data to identify 5 s high pitch angle glide segments at depths >100 m. Body density is estimated for each glide using gliding speed and pitch to quantify drag versus buoyancy forces acting on the gliding animal. We used tag data from 24 elephant seals (Mirounga spp.) to validate the onboard calculation of body density relative to drift rate. The new tags relayed body density estimates over 200 days and documented lipid store accumulation during migration with good correspondence between changes in body density and drift rate. Our study provided updated drag coefficient values for gliding (Cd,f = 0.03) and drifting (Cd,s = 0.12) elephant seals, both substantially lower than previous estimates. We also demonstrated post-hoc estimation of the gliding drag coefficient and body density using transmitted data, which is especially useful when drag parameters cannot be estimated with sufficient accuracy before tag deployment. Our method has the potential to advance the field of marine biology by switching the research paradigm from indirectly inferring animal body condition from foraging effort to directly measuring changes in body condition relative to foraging effort, habitat, ecological factors and anthropogenic stressors in the changing oceans. Expanding the method to account for diving air volumes will expand the system's applicability to shallower-diving (<100 m) species, facilitating real-time monitoring of body condition in a broad range of breath-hold divers.Publisher PDFPeer reviewe
Change in stroking pattern of female northern elephant seals throughout their post-breeding migration
第2回極域科学シンポジウム/第33回極域生物シンポジウム 11月17日(木) 統計数理研究所 3階リフレッシュフロ
- …