5 research outputs found

    Characterization of gene-environment interactions by behavioral profiling of selectively bred rats: The effect of NMDA receptor inhibition and social isolation

    Get PDF
    Gene-environment interactions have an important role in the development of psychiatric disorders. To generate and validate a new substrain of rats with signs related to schizophrenia, we used selective breeding after postweaning social isolation and chronic ketamine treatment through several generations of animals and compared the subsequent strain to naive rats that were not genetically manipulated. We further investigated whether social isolation and ketamine treatment augmented the appearance of schizophrenic-like signs in these rats. Four experimental groups were studied (n= 6-15 rats/group): naive rats without any treatment (NaNo); naive rats with postweaning social isolation and ketamine treatment (NaTr); 15th generation of selectively bred animals without any treatment (SelNo) or selectively bred rats with both isolation and ketamine treatment (SelTr). The startle reaction, tail-flick and novel object recognition tests were used to classify the animals into low- or high-risk for schizophrenia. Reduced pain sensitivity, higher degree of the startle reaction, disturbed prepulse inhibition, altered motor activity and decreased differentiation index in the memory test were observed in the 15th generation of the substrain, along with enhanced grooming behavior. Five functional indices (TF latency, startle reaction, prepulse inhibition, differentiation index, and grooming activity) were rated from 0 to 2, and the analysis of the summarized score revealed that the NaNo group had the lowest overall indication of schizophrenic-like signs, while the SelTr animals scored the highest, suggesting that both heritable and environmental factors were important in the generation of the behavioral alterations. We assume that further breeding after this complex treatment may lead to a valid and reliable animal model of schizophrenia. © 2012 Elsevier B.V

    The effects of juvenile capsaicin desensitization in rats: Behavioral impairments

    Get PDF
    Capsaicin desensitization leads to behavioral changes, some of which are related to schizophrenia, but investigations into these effects have been scarce. The goal of this study was to characterize the consequences of juvenile capsaicin desensitization on different functions: acute and inflammation-induced thermal and mechanical sensitivity, urinary bladder capacity and thermoregulation, and also on the potentially schizophrenia-related impairments in sensory-motor gating, motor activity and cognitive functioning. Male Wistar rats desensitized with increasing doses of subcutaneous capsaicin after weaning were investigated. Heat and mechanical pain sensitivity did not change significantly; however, morphine produced a prolonged decrease in the nociceptive response to inflammation in desensitized animals. Ultrasound examination of the bladder revealed enhanced bladder volume in treated animals. Capsaicin-treated animals had higher body temperature at 22 degrees C in both dark and light periods, and they also showed prolonged hyperthermia in new environmental circumstances. Warm environment induced a profound impairment of thermoregulation in desensitized animals. The treated animals also showed higher levels of activity during the active phase and at both cool and warm temperatures. The amplitude of the responses to auditory stimuli and prepulse inhibition did not differ between the two groups, but the desensitized animals showed learning impairments in the novel object recognition test. These results suggest that juvenile capsaicin desensitization leads to sustained changes in several functions that may be related to schizophrenia. We propose that capsaicin desensitization, together with other interventions, may lead to an improved chronic animal model of schizophrenia
    corecore