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Characterization  of  selectively  bred  rats  in  terms  of  schizophrenia-related  alterations.
Complex treatment  with  social  isolation  and  ketamine  injections.
Both  pain  sensitivity  and  motor  activity  decreased  in  treated  animals.
Sensory  gating  deficit  and  memory  dysfunctions  could  also  be  observed.
Selective  breeding  and  complex  treatment  are  important  in producing  these  changes.
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a  b  s  t  r  a  c  t

Gene–environment  interactions  have  an  important  role  in  the  development  of  psychiatric  disorders.  To
generate  and  validate  a new  substrain  of  rats  with  signs  related  to  schizophrenia,  we  used  selective
breeding  after  postweaning  social  isolation  and  chronic  ketamine  treatment  through  several  generations
of  animals  and  compared  the  subsequent  strain  to naive  rats  that  were  not  genetically  manipulated.
We  further  investigated  whether  social  isolation  and  ketamine  treatment  augmented  the  appearance  of
schizophrenic-like  signs  in  these  rats.  Four  experimental  groups  were  studied  (n =  6–15  rats/group):  naive
rats without  any  treatment  (NaNo);  naive  rats  with  postweaning  social  isolation  and  ketamine  treatment
(NaTr);  15th  generation  of  selectively  bred  animals  without  any  treatment  (SelNo)  or  selectively  bred
rats  with  both  isolation  and  ketamine  treatment  (SelTr).  The  startle  reaction,  tail-flick  and  novel  object
recognition  tests  were  used  to classify  the  animals  into  low- or high-risk  for  schizophrenia.  Reduced  pain
sensitivity,  higher  degree  of  the  startle  reaction,  disturbed  prepulse  inhibition,  altered  motor  activity  and
decreased  differentiation  index  in  the  memory  test  were  observed  in  the  15th  generation  of  the  substrain,
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provided by SZTE Publicatio Repozitórium - SZTE - Repository o
along  with  enhanced  grooming  behavior.  Five  functional  indices  (TF latency,  startle  reaction,  prepulse
inhibition,  differentiation  index,  and  grooming  activity)  were  rated  from  0 to 2,  and  the  analysis  of the
summarized  score  revealed  that  the  NaNo  group  had  the  lowest  overall  indication  of schizophrenic-
like  signs,  while  the  SelTr  animals  scored  the  highest,  suggesting  that  both  heritable  and  environmental
factors  were  important  in  the  generation  of the  behavioral  alterations.  We  assume  that  further  breeding
after this  complex  treatment  may  lead  to a valid  and  reliable  animal  model  of  schizophrenia.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Schizophrenia is a devastating psychiatric disorder that impairs

ental and social function and affects approximately 1% of the

opulation worldwide [1,2]. It is characterized by positive symp-
oms (hallucinations, delusions, and thought disorder), negative
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ttp://dx.doi.org/10.1016/j.bbr.2012.11.022
symptoms (deficits in social interaction, emotional expression,
and motivation), and cognitive dysfunction (impaired atten-
tion/information processing, problem-solving, processing speed,
verbal and visual learning and memory). Schizophrenia is con-
sidered as a complex, multifactorial disease. It is clear that
susceptibility is hereditary, in some cases; however, none of the

identified risk genes are specific to schizophrenia but rather indi-
cate a general vulnerability to mental health disorders [3]. The
neurodevelopmental hypothesis of schizophrenia is also a major
theory which suggests the significance of different stressors in
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he etiology of this disease [4,5]. Dopaminergic, serotoninergic,
lutamatergic and GABAergic deficits have been proposed as patho-
hysiological factors in schizophrenia. The underlying process of
he disease occurs in the early stages of neurodevelopment and

anifests only later, during the developmental restructuring of the
entral nervous system.

In order to understand the biological mechanisms under-
ying a complex disorder like schizophrenia, and in search of
ovel drug targets, valid animal models are necessary. There are

our main groups of chronic animal models for schizophrenia:
harmacological-, lesion-, environmental- and genetic models, and

 few studies applied certain combinations of these [6–9]. It is well-
nown that NMDA antagonists worsen symptoms in schizophrenia
nd can induce schizophrenia-like symptoms in normal individ-
als [10–12].  Animals treated with NMDA receptor antagonists
xhibit a number of changes related to schizophrenia, including
eficits in memory function, pain sensitivity, as well as hyper-
esponsiveness to stimulants such as amphetamine [6,13–17]. The
MDA receptor system has an effect on several transmitter systems

n the cortico–limbic–striatal network, and also plays a crucial role
n brain plasticity during early development [13,15,18];  therefore,
he developing brain is more susceptible to a chronic, low-dose
lockade of NMDA receptors: it causes synaptic weakening and
limination by over-pruning in several brain regions, including the
refrontal cortex and the hippocampus [19–25].

The profound neurobiological effects of stress are believed to
e the basis of many neuropsychiatric changes. Since Hatch and
olleagues first reported behavioral abnormalities in socially iso-
ated rats [26], a large body of evidence has accumulated to suggest
hat postweaning social isolation has profound, long-term effects
n rodent brain and behavior. Thus, postweaning social isolation is
n alternative, non-pharmacological model that produces a num-
er of behavioral consequences in adulthood that are similar to
chizophrenia symptoms, including deficits in sensorimotor gat-
ng, pain sensitivity, motor activity and enhanced sensitivity to
sychoactive drugs [27–32].  This intervention also causes spe-
ific deficits in the prefrontal cortex, significant neurotransmission
bnormalities including enhanced dopamine and serotonin func-
ions in the basal ganglia [8,33,34].

As the subchronic NMDA-receptor antagonist model and the
ostweaning social isolation model of schizophrenic symptoms
roduce somewhat complementary, but not always robust behav-

oral alterations, some authors applied a combined “double hit”
odel to investigate the hypothesis that these manipulations

an enhance the reliability of the schizophrenia model [35,36].
his paradigm applied in adult or juvenile rats induced sev-
ral behavioral abnormalities, such as hyperresponsiveness to
ifferent stress situations, drugs and altered pain sensitivity
6,15,32,37,38]. Importantly, combining the two  manipulations did
ot produce detectable additive or synergistic effects on behavior
r hippocampal plasticity, however, these animals showed more
chizophrenia-like signs.

Animal models generated by artificial selection are tools that
an be used to gain a better understanding of the genetic makeup
ehind the complex symptomatology of different syndromes

ncluding schizophrenia [39–41].  There are data to suggest that
elective breeding approaches in rats may  be a powerful strategy
o unravel the genetic basis of schizophrenia [40,42,43].

We hypothesized that the combination of genetic and environ-
ental factors could yield a reliable rat model of schizophrenia;

hus, the aim of our study was to generate and validate a new
ubstrain of rats by selective breeding after social isolation and

hronic ketamine (which acts primarily as a noncompetitive NMDA
eceptor antagonist) treatment. Selective breeding started in March
008, and the desired substrain was defined as exhibiting measur-
ble alterations in acute heat-pain sensitivity, sensory gating and
Research 240 (2013) 134– 145 135

memory functions. The behavioral profile (sensory gating, pain sen-
sitivity, memory function) was  characterized in the 15th generation
of our substrain by using the tail-flick (TF), the prepulse inhibition
(PPI) and novel object recognition (NOR) tests.

2. Materials and methods

2.1. Selective breeding process

All procedures were ethically approved by the institutional animal care com-
mittee. Both male and female Wistar rats were used. Starting from a population
of  outbred Wistar rats (‘parental generation’: 10 males and 10 females), a breed-
ing line was  established by selective breeding according to the rats sensitivity to
acute heat pain after social isolation and ketamine treatment. In further genera-
tions, the parental generation consisted of between 13 and 16 animals of each sex.
The  paradigm for selective breeding through several generations was as follows:
rats, after weaning at 3 weeks of age (21–23 days), were tested with the TF test
and then housed individually for 28 days (between 4 and 7 weeks of age) in cages
of  42 × 15 × 12 cm (l × w × h) with wood shavings as bedding and nesting material.
The animal housing rooms, as well as the experimental rooms, were kept under
standard laboratory conditions (light-dark circle: 12:12 h; light on at 06:00 h; tem-
perature 22 ± 1 ◦C; relative humidity: 55 ± 10%). Commercial rat diet and bottled
tap water were available ad libitum. The cages were placed in shared racks so that
auditory and olfactory contacts were maintained. The animals were treated with
ketamine (CALYPSOL, Richter Gedeon Nyrt., Budapest, Hungary; 30 mg/kg intraperi-
toneally, 4 ml/1000 g body weight, daily, 5 times/week, 15 injections in total) from
5  to 7 weeks of age. Duration of ketamine treatment and isolation parameters were
adapted from earlier studies [6,15,44]. At the end of the treatment, animals were
re-housed in a group setting (4–5 rats per cage) and 1 week of recovery, with no
treatment, followed. Behavioral assessment started at the age of 9 weeks with the
TF  test. Five rats of both sexes, that showed the highest pain threshold, as indicated
by  the TF test, were selected for the next breeding generation. Their offspring (1st
generation) and the subsequent 2nd generation were also tested only in the TF test,
and  again 5 rats of each sex with the highest pain thresholds were chosen to par-
ent  the next generation of the breeding line. From the 3rd generation we  also used
the PPI test to investigate sensory gating (at the age of 10 weeks), and the animals
showing a high pain threshold, along with a low PPI were selected for a further
breeding line. From the 6th generation, the NOR test was also applied (at the age of
11 weeks) to investigate memory functions and motor activity. Thus, animals with
impaired pain sensitivity, PPI and NOR were selected for the further breeding lines.
From the second generation, 5–7 animals of both sexes were selected for breeding.
Sibling mating was avoided by paying close attention to the litter of origin, and the
litter size was  reduced to a maximum of 6–8 pups (the number of males and females
was  approximately equal), ensuring that each family contributed equally to the next
generation. We found no signs of inbreeding depression (i.e. reduction of fertility,
deformed offspring, small litters, poor mothering ability) in the selected line. Male
rats  of the 15th generation were involved in the present experiment.

2.2. Experimental paradigm

Four experimental groups of male rats were compared (n = 6–15 rats/group):
naive socialized rats without any treatment (NaNo), or with isolation and ketamine
treatment (NaTr) and 15th generation selectively bred animals without any treat-
ment (SelNo), or with isolation and ketamine treatment (SelTr). Groups were
matched according to body weight (50 ± 1.7 g) and their TF values at the age of
3  weeks. The testing schedule is presented in Fig. 1. The body weights of rats in all
experimental groups were measured throughout the investigation period.

2.3. Nociceptive testing

Acute nociceptive threshold was assessed by the TF test. The reaction time was
determined by immersing the distal 5 cm portion of the tail in hot water (48 ◦C) until
a  tail-withdrawal response was observed (cut-off time: 20 s or 40 s at the age of 3
or  9 weeks, respectively). TF latencies were obtained four times at 0, 30, 60, and
90 min  and, since they did not differ significantly, were averaged to establish the
pain threshold for each group.

2.4. Prepulse inhibition test

PPI of the acoustic startle response was measured in four startle chambers as
described previously [45]. The Plexiglas startle chamber was in a sound-attenuated
room and was divided into four identical compartments (12 × 17 × 15.3 cm each).
Noise bursts were applied through a speaker mounted close to the backside of the
chamber. Under the cage, a piezoelectric accelerometer (i.e. force transducer) sen-

sitive to rat startle-like movements produced an electrical signal that was  amplified
by  a signal conditioner and visualized on a computer screen. Rats were allowed to
habituate to the background noise (70 dB) for 10 min, immediately thereafter they
were exposed to three different trial types: a PULSE ALONE (PA) in which a 40 ms
95  dB white noise burst was presented; PREPULSE ALONE (PPA), 20 ms  76 dB; and the
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ig. 1. Experimental paradigm. TF, tail-flick test; PPI, prepulse inhibition test; NOR, n
ith  social isolation and ketamine treatment; SelNo, selectively bred rats without 

ocial  isolation; KET, ketamine treatment.

REPULSE-PULSE PAIR (PP) in which prepulse stimuli were followed by the acous-
ic  startle stimulus with a latency of 150 ms.  All types were presented 10 times. The
nterstimulus intervals ranged from 7 s to 13 s, and there was a 10 min’ resting period
etween each trial. The %PPI values were calculated as percentages using the follow-

ng formula: %PPI = [1 − (startle response for PREPULSE + PULSE trial)/(startle response
or  PULSE ALONE trial)] × 100. Since the startle reaction increases significantly with
ody weight, we  normalized the reaction to body weight, accordingly:

elative startle reaction :
startle reaction × 100

body weight (g)
.

.5. Novel object recognition test

Rats were habituated to the testing room (with dim light) for 60 min prior to
he  start of the experiments. The NOR test was conducted in a Plexiglas box (arena,
0  × 34 × 33 cm)  without bedding, with black walls to obscure the testing room from
he animals. Toy brick towers (Lego Group, Billund, Denmark) of similar size but not
xactly the same shape (∼8 × 2 × 3 cm)  were used as test objects. They were affixed
o  the floor of the box to prevent them from being displaced during testing. The
bjects were placed 13 cm from the opposing corners of the arena, and the rat was
onsistently placed in the middle of the arena to be equidistant from both objects.
etween the testing of different animals, the arena and the objects were cleansed
ith 70% ethanol.

.5.1. Procedures
Habituation phase: Each rat was placed in the center of the chamber and allowed

o  explore the open field without any objects for a single 10-min session. Sample
hase:  One minute following the habituation session, the sample phase began. Two
bjects with the same size and shape (S1 and S2) were mounted in the open-field.
ats were put into the center of the open field again, and allowed to explore the
wo  identical objects for 5 min. Test phase: At the end of the sample phase, each rat
as  returned to their home cage for a one-hour retention interval, while one of the

bjects was replaced with another, visually non-identical one (N: novel). The other
bject (F: familiar) was the same as in the sample phase. Afterwards, a 5-min test
hase followed.

Behavior in all trials was  recorded with an infrared video device (WCM-21VF,
NB, China). The scoring of the different behaviors was  carried out by investiga-
ors  blind to the applied treatment. The following parameters were scored in each
hase: duration of stereotypic behaviors, such as rearing, self-grooming, the time of
xploratory activity and walking. Object exploration was defined as animals’ licking,
niffing or touching the object with the forepaws, but not leaning against, turning
round, standing on or sitting on the object. Since the habituation phase lasted
wice as long as the other phases, behavioral activity was  divided into and scored in
ub-phases (0–5 and 5–10 min) for analysis.

The discrimination index (DI) was calculated for both the sample and test phases
s  follows: DI: (time spent exploring N vs S1 object − time spent exploring F vs S2
bject)/(total  time spent exploring both the objects [S1 + S2] vs [N + F]). If the animals
id not explore the objects during the sample or test phases, they were considered as
on-responders and data from these animals were not included in the final analysis
altogether one animal from the SelTr group was excluded on such grounds).

.6.  Statistical analyses

Data are expressed as means ± SEM. The median split method was  used for trans-

orming continuous variables into categorical ones. A quartile-based scoring method
as  used. The values in the first (lower) quartile received 0 points, values in the

hird (upper) quartile received a score of 2, and the values between them received
 point. Five aspects (TF latency at the age of 9 weeks, relative startle reaction, %PPI,
I,  and grooming activity) were rated from 0 (lowest risk) to 2 (highest risk), and
bject recognition test; NaNo, naive animals without treatments; NaTr, naive animals
ents; SelTr, selectively bred rats with social isolation and ketamine treatment; SI,

summarized to generate the total schizophrenia score, which ranged from 0 to 10.
Using this score, it was possible to classify animals as either low- or high-risk for
schizophrenia using quartiles of the total schizophrenia score.

Effects of treatment (social isolation + ketamine) and strain (naive or selectively
bred), and interactions were assessed using two-way ANOVA. Subsequent analysis
was performed using the Fisher-LSD test. Level of significance was set at p < 0.05.
For the analyses, STATISTICA for Windows 7.1 (Statsoft Inc., Tulsa, OK) was used.

3. Results

The body weight measured on the different testing days (Fig. 2)
showed a significant effect of time (F3,117 = 3077.81, p < 0.0001) and
strain (F1,39 = 24.78, p < 0.001), and the interaction between time
and strain (F3,117 = 7.13, p < 0.001) was also significant. That is, the
substrain started to exhibit a lower body weight from age of 9
weeks. The social isolation together with ketamine treatment did
not result in further weight loss.

3.1. Tail-flick test

ANOVA revealed a significant effect of strain (F1,39 = 4.23,
p < 0.05), time (F1,39 = 328.15; p < 0.001) and a significant inter-
action between time and strain (F1,39 = 4.94; p < 0.05) on the TF
latencies measured at 3 and 9 weeks of age; thus, the TF latency
significantly increased in all groups with time. Post hoc com-
parison did not reveal differences between the groups at the
age of 3 weeks, but a tendency toward TF latency increase was
observed in the new substrain (naive: 4.1 ± 0.21 s, 15th generation:
4.6 ± 0.27 s).

Significant differences were observed at the age of 9 weeks
between NaNo and both of the substrain groups (SelNo and
SelTr), with these groups having the lowest pain sensitivity
(Fig. 3). The latency in the NaTr group did not differ from any
other group.

3.2. Prepulse inhibition test

ANOVA revealed a significant effect of prepulse stimulation
(F1,39 = 72.47, p < 0.0001), and strain (F1,39 = 6.50, p < 0.05) (Fig. 4A)
on the magnitude of the startle reaction. The response significantly
decreased in the case of prepulse stimulation in all groups, except
the SelNo group. The post hoc comparison revealed significant dif-
ferences between the NaNo and SelTr groups with the PA, while
both of the selectively bred groups showed a significantly higher
degree of relative startle reaction compared to both of the naive

groups with the PP. Regarding %PPI, the effect of strain was sig-
nificant (F3,39 = 5.59; p < 0.005); thus, both groups of the substrain
(SelNo and SelTr) had lower PPI compared to the naive groups
(NaNo and NaTr) (Fig. 4B).
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.3. Novel object recognition test
ANOVA revealed a significant effect of strain (F1,39 = 6.75,
 < 0.05), of phase (F3,117 = 27.35, p < = 0.001), and significant

ig. 3. Tail-flick latency at the age of 3 and 9 weeks. + indicates significant differences be
on-treated (NaNo) group. Data are expressed as means ± SEM.
ificant differences as compared to the naive non-treated (NaNo) and naive treated

interaction between phase and strain (F = 3.69, p < 0.05)
3,117
(Fig. 5A) on the rearing activity during the different phases of the
NOR test. Rearing activity decreased with time (phase) in all groups,
and the 15th generation showed lower rearing activity in the

tween the two time points. * indicates significant difference compared to the naive
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NaNo group had the lowest score, while the SelTr group scored the
ig. 4. (A) Degree of relative startle reaction without (PA) and with prepulse (PP) st
A  and PP, * and # indicate significant difference compared to the naive non-treate

ample and/or testing phases. The NaTr group showed enhanced
earing activity in the test phase compared to all the other
roups.

Strain differences were also found in the grooming behavior, i.e.
he substrain showed increased grooming activity during the sec-
nd part (5–10 min) of the habituation phase (F1,39 = 4.18, p < 0.05;
ig. 5B).

Analysis of walking duration revealed a significant effect of
train (F1,39 = 8.88, p < 0.01), phase (F3,117 = 56.61, p < 0.001) and a
hase–treatment interaction (F3,117 = 3.39, p < 0.05); thus, walk-

ng activity decreased with time (phase), and was lower in the
ew substrain, while the NaTr group showed enhanced activity in

he sample and test phases (Fig. 5C). Both NaTr and SelTr groups
howed an increased exploring time of the objects (Fig. 5D). As for
he DI, ANOVA revealed a significant effect of phase (F1,38 = 5.70,

 < 0.05). The post hoc comparison revealed that in the NaNo group
s. (B) %PPI values in the different groups. + indicates significant difference between
o) and treated (NaTr) groups, respectively. Data are expressed as means ± SEM.

DI was significantly enhanced in the presence of the new object,
while this enhancement could not be observed in any other groups
(Fig. 5E).

3.4. Categorization

Since the quality of motor activity significantly differed between
the NaTr and SelTr groups, these parameters were not used for cat-
egorization. ANOVA revealed significant differences between the
four groups (F = 9.47, p < 0.001) in the summarized score, i.e. the
highest (Fig. 6A). The histogram of the summarized score shows
that all NaNo animals scored lower than 6 points, while in all of the
other groups there were some animals that scored higher, and the
highest ratio of these was observed in the SelTr group (Fig. 6B).
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. Discussion
Schizophrenia poses a challenging degree of complexity
ith respect to genetic and environmental factors; nonetheless,

nly a few studies have addressed possible gene–environment

ig. 5. Rearing (A), grooming (B), walking (C) and exploratory (D) activities in the different 

nd  second (5–10 min) habituation period; × and # sign significant difference with trea
aive  and selected groups. (E) Differentiation index in the sample and test phases. $ indica
Research 240 (2013) 134– 145 139

interactions in the context of schizophrenia models [5,46,47]. We
combined selective breeding, postweaning social isolation and

subchronic NMDA antagonist treatment to determine the effects of
these interventions on responses to acoustic stimulation, memory
function, pain sensitivity and motor activity; the parameters

phases of the NOR test. + and * indicate significant difference from the first (0–5 min)
tment and strain, while the symbol o indicates significant difference between the
tes significant difference between the phases. Data are expressed as means ± SEM.
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hat are impaired in several neuropsychiatric disorders, like
chizophrenia. Our data suggest that this complex paradigm can
ead to an improved model of schizophrenia; although, further
reeding is required to enhance its reliability.
.1. Sensory gating

Deficits in sensory gating have been described as a prominent
rea of information processing dysfunction in individuals with
inued )

psychosis, and it may  contribute to the characteristic thought disor-
der and cognitive fragmentation seen in schizophrenia [11,48–51].
It is important to mention that PPI deficits are not unique to
schizophrenia, as patients with other neuro-psychiatric diseases
(e.g. Huntingtons’s disease, Tourette’s syndrome, autism, bipolar

or panic disorder) also show this disturbance, and a lack of this
phenomenon in schizophrenia has also been reported [50,52].

Previous studies revealed that repeated NMDA-antagonist
treatment of neonatal or adult rats led to the disruption of PPI
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n some but not all the animals [53–56],  and the cessation of
MDA-antagonist treatment resulted in remission; which, sug-
ests that this treatment by itself is not sufficient to produce a
ong-term simulation of the PPI disturbance [17,57–59].  Plenty
f evidence suggests that long-term postweaning social isolation
ay also cause impaired PPI in rodents, but resocialization may

ead to recovery in these changes; however, the data are some-
hat inconsistent [11,60–69].  It is assumed that changes in the
refrontal cortex after social isolation and/or imbalances between
eural connections within the cortico–striato–limbic circuitry lead
o the observed PPI disturbances [8]. Altered sensitivity to novelty
nd disturbed PPI as a result of selective breeding was proven to
e heritable, and this can be used to develop an animal model for
chizophrenia [43,70–73].  The rats with impaired PPI also exhib-
ted deteriorated social behavior, impaired reward responses, and
bnormalities in information processing; which indicates that rats
ith low PPI show other schizophrenia-like disturbances, as well.
egarding the combination of genetic manipulation with environ-
ental factors, it has been shown that postweaning social isolation

or 12 weeks did not impair PPI in Nurr1 wild type mice, but it was
isturbed in heterozygotic animals [74].

We did not find a striking effect of social isolation and ketamine
reatment on PPI after two weeks of treatment cessation in naive
nimals. Selective breeding was effective, but the combination of
hese interventions did not lead to further impairment; which sug-
ests that genetic factors played the major role in the development
f PPI disturbance.

.2. Memory

Cognition, including memory, is impaired in schizophrenia, and

oth social deprivation and repeated treatment with NMDA antag-
nists of juvenile animals can disrupt memory functions which
re related primarily to the prefrontal cortex [13,75–80];  how-
ver, several studies failed to induce impairments in tests of
inued ).

memory with these treatments, or only modest learning distur-
bances were observed [13,17,20,21,52,55,56,78–82]. Ashby et al.
investigated the effects of subchronic NMDA-antagonist, MK-801,
and postweaning social isolation (for 5 weeks) on hippocampal long
term potentiation (LTP) after a 7 days’ washout period [36]. While
subchronic MK-801 treatment enhanced hippocampal LTP, post-
weaning social isolation did not influence it, and the combination
of the two  manipulations did not result in detectable additive or
synergistic effects on hippocampal plasticity.

The NOR task is based on the spontaneous novel object pref-
erence of rodents. A reduction in novel object recognition might
be interpreted as a memory deficit, and the underlying process
is a possible analog of declarative memory in humans [83–85].
Anatomically, this task is assumed to depend on the hippocampus,
the nigrostriatal dopaminergic pathway and rhinal cortex [86,87].
Both postweaning isolation and NMDA antagonist treatment can
lead to impairment in the NOR test, but the results are controversial
in this respect, too [19,66,79,88–92].

We have found that all the groups, except for NaNo, showed
impairment in the NOR test, i.e. the ability to discriminate between
novel and familiar objects was disturbed; thus, we assume that
both genetic and environmental factors play a role in the memory
deficit. However, it would be useful to apply further memory tests
(e.g. T-maze or holeboard) to characterize this deficit in detail.

4.3. Motor activity

Altered motor activity has been reported in schizophrenia.
Depending on the disease subtype, psychopathology and medi-
cation, excessive motor agitation, reduced motor activity, even
akinetic episodes, are observed, and these motor disturbances

have been related to basal ganglia dysfunction [93–98].  Postwean-
ing social isolation increases activity in novel environments, but
data are controversial and the effect depends on the strain of
rodents [62–64,66,89,90,99–103]. Most studies investigated motor
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on-treated (NaNo) and treated (NaTr) groups, respectively.

ctivity during isolation, but social isolation by itself did not pro-
uce long-term changes in motor activity [60,104]. Some reports
uggest motor disturbances after NMDA antagonist treatment,
ut the results are inconsistent, and the effect depends on the
ge of the animals [19,82,91].  Cessation of treatment in adult
r juvenile rodents did not cause gross changes in motor activ-
ty, while early postnatal treatment was effective in this respect
19,21,56,105].  Beninger’s laboratory investigated the effects of
ubchronic MK-801 and postweaning social isolation on motor
ctivity [35,36,106]. Postweaning social isolation enhanced loco-

otor activity, while MK-801 treatment, alone, did not alter it,

ut blunted the amphetamine-induced hyperlocomotion. The com-
ination of the two manipulations did not produce detectable
dditive or synergistic effects on behavior.
roup. The symbols * and # indicate significant differences compared to the naive

In the present study, the complex analysis of motor activ-
ity during the NOR test revealed that the selective breeding
decreased overall motor activity but increased the grooming behav-
ior. The ketamine treatment + social isolation induced increased
exploratory activity in both naive and selected groups. Inter-
estingly, the complex treatment in selectively bred animals
resulted in an altered motor phenotype with decreased rearing
and walking activity, accompanied by increased exploratory and
grooming activities. The enhanced grooming behavior can indi-
cate anxiety, and might present a useful strategy to investigate

stress-related responses in animal models of neuropsychiatric dis-
orders [107–109]. Hyper-exploratory activity was also observed
in animals with hippocampal lesions, which is another model for
schizophrenia [110]. To clarify these results regarding the different
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spects of motor behavior, further investigation of motor behavior
s necessary in these animals.

.4. Pain sensitivity

Clinical reports pointed out that many patients with schizophre-
ia are less sensitive to pain than other individuals, and this is likely
ssociated with increased morbidity and mortality [111–113]. Data
re available to suggest that juvenile isolation causes significant
hanges in pain sensitivity, which might be due, at least partially,
o changes in the number and activity of opioid receptors; sug-
esting a high importance of housing conditions in schizophrenia
odels [6,15,29,38,104,114–117]. Subchronic ketamine treatment

nd subsequent social isolation in adult rats produces slight
hanges in pain sensitivity [38]. Our recent study demonstrated
hat juvenile isolation, but not ketamine treatment, attenuated
esponses evoked by acute heat stimuli; while the combination
f the two manipulations did not result in a further increase in
F latency. In the same study we showed that social isolation,
etamine treatment and their combination enhanced the antinoci-
eptive effect of morphine [6]. While selective breeding led to

 significant increase in pain threshold, the complex treatment
pplied in the present study did not result in a further enhance-
ent; suggesting that genetic factors played a larger role in this

ffect.
It should be noted that our study is not without limitations.

lthough we  did observe deficits persisting for weeks after the
ast drug administration, further studies are needed to determine

hether these deficits are maintained over a longer time period
ollowing treatment cessation. It is well-known that no neuropsy-
hological test is a perfect indicator of psychiatric disorder and
ndication of disease must be present on a battery of tests in
rder to justify a diagnosis of schizophrenia [118]. In animals, it is
mpossible to determine most of these parameters; therefore, other
ppropriate parameters must be chosen to indicate schizophrenia
n rodents. While none of the measured parameters are specific to
chizophrenia, we hypothesize that categorization and the cluster
ampling of the described parameters could improve the model,
s the presence of many of the described indicators together can
uggest psychotic-like disturbance.

We support that this new substrain is a promising model for
chizophrenia, but acknowledge that further complex environmen-
al and genetic manipulations should be investigated to improve
he model. Social isolation together with pharmacological treat-

ent can increase the prevalence of the animals with schizophrenic
igns, and the reliability of the model. Our present results con-
rm that selective breeding is still one of the most fundamental
nd effective methods for the assessment of complex traits influ-
nced by multiple genes. A classic example of such complexity is
he demonstration of cognitive abilities that show a significant
nheritance, as indicated by the experiments of Tryon (1929) in
electively bred rats [119,120].  In the largest published familial
chizophrenia cohort, Toulopoulou et al. demonstrated that a major
ortion of phenotypic correlation between schizophrenia patients

n certain cognitive measures could be explained by shared mul-
iple genes [121]. In spite of these facts, selective breeding is a
elatively rare method used in schizophrenia research. Although
any of the measures we used did not indicate a straightforward

ene–environment interaction, the summarized score based on
ategorization revealed that the selectively-bred and treated ani-
als differed most markedly from the naive, non-treated rats. This

uggests that genetically pre-disposed traits together with envi-

onmental risk factors resulted in the most prominent impairment
elative to naive animals with no environmental perturbation. A
urther limitation of our assessment of gene–environment interac-
ion was that we used a limited set of tests. A more comprehensive
Research 240 (2013) 134– 145 143

battery of behavioral measures may  lead to a better detection of
such interactions.

In conclusion, selective breeding after juvenile isolation and
ketamine treatment produces several signs which resemble those
found in schizophrenia; however, further breeding is required to
improve our animal model. Molecular biological studies are also
required to reveal any changes of various neurotransmitter sys-
tems and genetic abnormalities. We  suggest that the resulting rat
line may  serve as a potentially powerful model for the examina-
tion of the gene–environment interaction in the development of
schizophrenia.
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