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HIGHLIGHTS

* Juvenile capsaicin desensitization did not change pain thresholds.

* Treatment increased urinary bladder capacity and morphine-induced antinociception.
* Desensitization disturbed memory and motor but not sensorimotor gating functions.
* Desensitized animals showed impairment in thermoregulation.

* Capsaicin desensitization influenced several parameters related to schizophrenia.
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Capsaicin desensitization leads to behavioral changes, some of which are related to schizophrenia, but investiga-
tions into these effects have been scarce. The goal of this study was to characterize the consequences of juvenile
capsaicin desensitization on different functions: acute and inflammation-induced thermal and mechanical sensi-
tivity, urinary bladder capacity and thermoregulation, and also on the potentially schizophrenia-related impair-

ﬁgﬁg:ﬂs: ments in sensory-motor gating, motor activity and cognitive functioning.
Motor activity Male Wistar rats desensitized with increasing doses of subcutaneous capsaicin after weaning were investigated.

Heat and mechanical pain sensitivity did not change significantly; however, morphine produced a prolonged de-
crease in the nociceptive response to inflammation in desensitized animals. Ultrasound examination of the blad-
der revealed enhanced bladder volume in treated animals.

Capsaicin-treated animals had higher body temperature at 22 °C in both dark and light periods, and they also
showed prolonged hyperthermia in new environmental circumstances. Warm environment induced a profound
impairment of thermoregulation in desensitized animals. The treated animals also showed higher levels of activ-
ity during the active phase and at both cool and warm temperatures.

The amplitude of the responses to auditory stimuli and prepulse inhibition did not differ between the two groups,
but the desensitized animals showed learning impairments in the novel object recognition test.

These results suggest that juvenile capsaicin desensitization leads to sustained changes in several functions that
may be related to schizophrenia. We propose that capsaicin desensitization, together with other interventions,
may lead to an improved chronic animal model of schizophrenia.
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1. Introduction brain raised the possibility that this receptor could play a significant

role in the central nervous system (CNS). It is suggested that TRPV1 re-

Vanilloids, such as capsaicin, exert complex pharmacological effects
at transient receptor potential vanilloid-1 (TRPV1) receptors, producing
an initial activation followed by a long-lasting desensitization of the
channel [44,53]. The extensive distribution of TRPV1 receptors in the
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ceptors might take part in the pathogenesis of several disorders such as
Parkinson's and Alzheimer's diseases, depression, anxiety and schizo-
phrenia [7,14,40,45,51]. The dopaminergic dysfunction in schizophrenia
is well-known, and TRPV1 receptors can regulate this system by striatal
endocannabinoid neurotransmission [58]. It is also known that the cog-
nitive and motor functions, and sensory-motor gating are disturbed in
schizophrenia, however, only a few studies have investigated the effects
of capsaicin desensitization on these processes [6,45].
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We applied capsaicin desensitization three weeks after birth, before
the termination of the development of the central and peripheral ner-
vous systems in the rat [50]. Earlier results suggested that capsaicin-
induced neurodegeneration in specific brain sites declines progressively
during maturation [48]. During postnatal development, sensory experi-
ences play a critical role in the refinement of cortical connections. There-
fore, degeneration of central axons and terminals of peripheral sensory
neurons may lead to intrinsic somatosensory deprivation, which, in
turn, could lead to functional and structural alterations in the CNS.
Given that there is some evidence to suggest that schizophrenia might
be connected with environmental and developmental disturbances at
young age, we assumed that juvenile capsaicin desensitization might
produce significant changes in behavioral profiles related to schizophre-
nia. However, as data are scarcely available about the effects of juvenile
desensitization [25], the primary aim of this study was to characterize
the influence of post-weaning high dose capsaicin treatment on various
functions proven to be affected by TRPV1 receptor systems, such as pain
sensitivity, inflammation, urinary bladder function and thermoregula-
tion. The secondary aim was to investigate the effects of juvenile desen-
sitization on behavioral parameters impaired in schizophrenia, such as
sensory-motor gating, motor activity and memory function.

2. Materials and methods
2.1. Animals

All procedures were carried out with the approval of the Ethical
Committee of the University of Szeged, Faculty of Medicine. Twenty-
one-day-old male Wistar rats were injected with increasing doses (10,
20, 50 and 100 mg/kg subcutaneously) of capsaicin under ketamine
and xylazine (72 and 8 mg/kg intraperitoneally, i.p. respectively) anes-
thesia through 4 days. Control animals received vehicle. The body
weight of the animals was recorded on a weekly basis during the study.

2.2. Drugs

Drugs used in the study were: capsaicin (Plantakem Kft, Sdndorfalva,
Hungary), ketamine hydrochloride (Calypsol, Richter Gedeon Rt.,
Budapest, Hungary), xylazine hydrochloride (Rompun, Bayer, Leverku-
sen, Germany), gentamicin (Sanofi-Aventis, Budapest, Hungary),
dexmedetomidine hydrochloride (Orion-Pharmos Pharmaceuticals
Turku, Finland), \-carrageenan (Sigma-Aldrich Kft., Budapest,
Hungary) and morphine hydrochloride (Teva Zrt, Debrecen, Hungary).
Capsaicin was dissolved in 10% Tween 80 and 10% ethanol. All the
other substances were dissolved in saline.

2.3. Wiping test

To confirm the desensitization following capsaicin treatment, we
assessed responses to corneally-applied capsaicin (1 drop of 0.001%
capsaicin) into one of the eyes of the animals at least 5 weeks after
the desensitization by recording the number of front paw eye wipes
over a 30-second period.

2.4. Assessment of mechanical and thermal sensitivity

Mechanical sensitivity was assessed with a Dynamic Plantar
Aesthesiometer (automatic von Frey test; Ugo Basile, Italy). Incremental
force (from 0 to 50 g in 8 s) was applied to the plantar surface of both
hindpaws through a mesh base.

To determine the heat pain threshold, the paw-withdrawal test
(PWD) was used [20]. In this test, heat stimulation is applied to each
hindpaw, and the time until the animal withdraws the tested paw is
measured. At the age of 10 weeks baseline values of joint diameter, me-
chanical sensitivity and thermal sensitivity were recorded. Thereafter,
unilateral inflammation was induced by intraarticular injection of

carrageenan (300 pg/30 pl saline) into the right ankle joint [41]. The
measurements were repeated 3 h after the injection, then the animals
were treated with 3 mg/kg morphine, s.c., and the mechanical and ther-
mal nociceptive thresholds were determined at 30-min intervals for
90 min. Joint diameter was also measured at the end of the experiment.

2.5. Ultrasound examination of the urinary bladder

The method was based on our earlier study [28]. At the age of
12 weeks, the rats were anesthetized with dexmedetomidine
(150 pg/kg, s.c.), which has long-lasting hypnotic anesthetic effects;
furthermore, it produces diuresis and overflow incontinence which
allows for the ultrasound examination of the urinary bladder. We used
sonography — 7.5 MHz linear passed array transducer (Hitachi EUB
405), and the bladder volume was estimated from a longitudinal and a
transverse image section by substituting the diameters into the ellipsoid
equation formula, and it was corrected for 100 g body weight (relative
bladder volume: RV). Bladder volume was assessed when the first urine
drop appeared, and two more times with 30-min intervals in each animal.

2.6. Prepulse inhibition (PPI)

At the age of 12 weeks, PPI of the acoustic startle response was mea-
sured, as described previously [2]. Rats were allowed to habituate to the
background noise (70 dB) for 10 min, and immediately thereafter ani-
mals were exposed to three different types of trials: pulse alone (PA),
in which a 40 ms white noise burst was applied at 95 dB to elicit the
startle reflex; prepulse alone (PPA), 20 ms 76 dB; and prepulse-pulse
pair (PP), that is a prepulse stimulus followed by the acoustic startle-
eliciting stimulus with a latency of 150 ms. All conditions were present-
ed 10 times. Interstimulus intervals ranged from 7 to 13 s. Between
each trial, there was a 10 minute resting period. %PPI values were calcu-
lated as percentages using the following formula:

%PPl = [1 — (startle response for PP trial) / (startle response for PA
trial)] x 100%.

2.7. Novel object recognition (NOR) test

NOR test was conducted in a Plexiglas box (60 x 34 x 33 cm) with-
out bedding at the age of 7 weeks. Toy brick towers (Lego Group,
Billund, Denmark) with similar size (8 x 2 x 3 cm) were used as test
objects. The rats were habituated to the testing room for 60 min prior
to the beginning of the experiments.

The following parameters were scored in each phase (habituation,
sample and test phases): frequency of occurrence of stereotypic behav-
iors (such as rearing and self-grooming), and the time of exploratory ac-
tivity and inactivity. Habituation phase: During a single 10 minute
session, each rat was allowed to explore the open field without any ob-
jects. Sample phase: 1 min after the habituation, the sample phase
began. Two identical objects were mounted in the open field. Rats
were allowed to explore them for 5 min. Test phase: At the end of the
sample phase, each rat was returned to their home cage for a 1 hour in-
terphase interval. Thereafter, one of the objects was replaced with an-
other visually non-identical one, and rats were placed back to the
arena for a 5 minute test phase.

2.8. Telemetry

This device is appropriate to monitor abdominal temperature and
gross locomotor activity in freely moving animals (Respironics, Mini
Mitter, Vitalview, Oregon, USA). Animals at the age of 9 weeks were
peritoneally implanted with Mini Mitter transmitters and received gen-
tamicin (10 mg/kg, s.c.) under ketamine-xylazine anesthesia. After a
one-week recovery period the animals were housed individually, and
their cages were placed in an isolated room maintained at 22 °C with
a6:00 a.m.-18:00 p.m. light cycle. Body temperature and motor activity
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were monitored continuously for 5 days at normal room temperature
(22 °C). For ambient temperature challenge, on the sixth day the ani-
mals were exposed to decreased room temperature (17 °C) for 4 h,
while on the seventh day to 27 °C for 5 h starting at 8:00 a.m.

In the first series of experiments, the animals were involved in the
pain tests and the ultrasound examination. Three additional groups of
animals took part in prepulse inhibition, novel object recognition tests
or telemetry.

2.9. Statistical analysis

Data are presented as means + SEM. One- and two-way ANOVA
with repeated measures and the Fisher-LSD post hoc test were used
for the evaluation of the effects of capsaicin desensitization on the dif-
ferent parameters. A p-value of less than 0.05 was considered signifi-
cant. Data were analyzed using STATISTICA 11 software (Statsoft Inc.,
Tulsa, OK, USA). In the case of the telemetric experiment, sampling fre-
quency was set to 1 min.

3. Results

All of the animals survived capsaicin desensitization with this dose
regimen, suggesting that this method is non-lethal for juvenile animals.
The ANOVA of body weight revealed a significant effect of time but not
for treatment, thus capsaicin-treated animals had similar body weight
as the control animals (data are not shown). Regarding the effects of
the capsaicin eye drop, it produced blepharospasm and violent wipes

of the eye in control, but not in the capsaicin-treated animals,
confirming desensitization (data are not shown).

3.1. Mechanical and thermal pain sensitivity

Before the inflammation no significant differences were observed
between the two groups on acute pain sensitivity either on the PWD
or von Frey tests (Fig. 1).

Regarding the inflammatory effects of carrageenan, ANOVA with re-
peated measures revealed a significant effect of side (F;34 = 593;
p <0.001), time (F,gs = 274; p <0.001) and their interaction
(F2,68 = 245; p < 0.001). Thus, carrageenan caused a significant in-
crease in the cross-section are of both groups; however, the degree of
the edema was significantly larger in the capsaicin-treated animals
(data are not shown).

Regarding the threshold for mechanical allodynia, significant effects
of treatment (F; 35 = 11.0, p < 0.005), side (F; 35 = 90.2; p < 0.001),
time (F4140 = 50.6; p < 0.001) and their interactions were observed.
Post-hoc comparison revealed that juvenile capsaicin desensitization
resulted in a slightly decreased mechanical allodynia (p = 0.13),
while the anti-allodynic effect of morphine was significantly prolonged
in desensitized animals (Fig. 1a). On the non-inflamed side, significant
increases in the withdrawal threshold were observed in both groups
after morphine administration (Fig. 1b).

In the case of thermal hyperalgesia, significant effect of treatment
(F135 = 19.0, p<0.001), side (F;35 = 14.8; p<0.001), time
(F4130 = 31.4; p < 0.001) and their interactions were observed. Carra-
geenan resulted in a similar degree of thermal hyperalgesia in both

a £ control # b ¥ # #
50 b # capsaicin # * i 50 b
+
* # ; +
S 40 } 40t g—__‘ #
@
o
2 #
£ 30t # 30 |
g +
o
T 2t + 20
= +
10 10 }
0r + or
-180 0 30 60 90 -180 0 30 60 90
c d
20 } 20 | # #
18 | # 18 | . :
+
16 | 16 |
w #
w
B 141 4 * 14 .
s 12t 12
- +
‘5" 10 | # 10 |
2 o ol 4=
6 \ # 6 }
4} i 4
2 2t
+
0 1 0 1t
-180 0 30 60 90 -180 0 30 60 90
Time (min)

Fig. 1. Mechanical (a, b) and thermal (c, d) pain thresholds before (— 180 min) and after (0 min) carrageenan administration, and the effect of morphine (3 mg/kg, s.c.) on the inflamed
(a, ¢) and non-inflamed (b, d) sides. Data are presented as means 4+ SEM; n = 8-11. The symbols denote significant differences: * from control group, + from pre- and # from post-

carrageenan values.
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Fig. 2. Relative urinary bladder volume determined by ultrasound examination at the begin-
ning of urine dribbling (0 min), 30 and 60 min later. Data are presented as means + SEM;
n = 8-11. The symbol * denotes significant differences from control group.

groups. Morphine caused a significant increase in PWD latency on the
inflamed side with a more prolonged effect in the desensitized group
(Fig. 1c). Furthermore, morphine caused a significant increase in the no-
ciceptive threshold on the non-inflamed paw in the capsaicin-
pretreated animals (Fig. 1d).

3.2. Urinary bladder volume

The first urine drop appeared about 20 min after the
dexmedetomidine administration. Urine dribbling was observed almost
continuously, suggesting a continuous overfilling of the bladder. As for
the effect of capsaicin desensitization on bladder capacity, ANOVA
with repeated measures revealed a significant effect of treatment
(F117 = 8.8; p < 0.01) and time (F»34 = 4.6; p < 0.05), thus capsaicin
treated animals had larger bladder volumes compared to the control
group (Fig. 2).

3.3. Prepulse inhibition

Repeated measures ANOVA of the relative startle reaction (referred to
the body weight) revealed a significant effect of prepulse stimuli
(F116 = 68.95, p = 0.001), but not of treatment. Capsaicin-treated ani-
mals (n = 10) showed similar startle reflex amplitude elicited by PA or
PP compared to the control group (n = 8); the response amplitude sig-
nificantly decreased in both groups with PP; therefore, the %PPI did not
show significant differences between the two groups (data are not
shown).
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Fig. 3. Object exploratory activity in the sample and test phases of NOR test. Data are pre-
sented as means + SEM; n = 5-7. The symbol # indicates significant differences in the
exploration time between the familiar and novel objects.

3.4. Novel object recognition test

No significant difference was observed in the rearing and grooming
behaviors and inactivity in any phases between the two groups (data
are not shown). In the sample phase, no significant differences were ob-
served in the time spent exploring the two identical objects between
the groups (Fig. 3). In the test phase, the time of the novel object explo-
ration was significantly longer than that of the familiar one in control
animals (p < 0.01), while this difference was not significant in the
desensitized group.

3.5. Thermoregulation and motor activity

Abdominal core temperature, independently of treatment, showed a
clear-cut daily rhythm with night maxima and day minima. The analysis
of the mean values of dark and light phases showed a significant effect
of phase (F;g; = 9.00, p <0.005) and treatment (F;e = 22.00,
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Fig. 4. Mean body temperature during dark and light periods (a). Core temperature chang-
esinthe cold (b) and warm (c) conditions. Data are presented as means 4+ SEM; n = 7-8.

The symbols denote significant differences between the two groups (*) and day cycles (#).
The arrows denote the starting (1) and ending (|) of the temperature changes.
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Fig. 5. Mean motor activity during dark and light periods (a). Motor activity changes in the
cold (b) and warm (c) conditions. N = 7-8 rats/group. The symbol * indicates significant
differences between the two groups. The arrows denote the starting (1) and ending () of
the temperature changes.

p < 0.001), i.e. capsaicin-treated animals had significantly higher core
temperature during both phases (Fig. 4a).

Motor activity also showed a daily rhythm with night maxima and
day minima. The separate analysis of dark and light phases showed a
significant effect of treatment (F; s = 5.87,p < 0.05) and a close to sig-
nificant effect of period (F; g; = 3.56,p = 0.06), which is to say that the
desensitized animals exhibited enhanced motor activity during the ac-
tive phase compared to control rats (Fig. 5a).

ANOVA with repeated measures revealed a significant effect of treat-
ment (F; 13 = 5.0, p < 0.05) and time (F;1,143 = 3.0, p < 0.001) in cold
ambient. Cooling caused a slightly more intensive decrease of core tem-
perature in the capsaicin-treated group, and after reheating they
showed minor overcompensation (Fig. 4b). Regarding the motor activ-
ity, the ANOVA revealed a significant effect of treatment (F; 13 = 6.03,
p < 0.05) and time (F;1,143 = 6.26, p < 0.001), i.e. capsaicin-treated an-
imals showed higher activity (Fig. 5b).

ANOVA with repeated measures revealed a significant effect of treat-
ment (F; 13 = 5.2,p < 0.01), time (F;1,143 = 11.3,p < 0.001) and inter-
action (Fy1143 = 2.0, p<0.05) at 27 °C temperature. Warming

significantly enhanced the body temperature in both groups; however,
the desensitized animals showed higher core temperature compared to
controls (Fig. 4c). As for motor activity, the ANOVA showed a significant
effect of time (F;1,143 = 3.54, p < 0.001) and treatment (F; 13 = 14.49,
p <0.01), signifying a slight hyperactivity in the capsaicin-treated
group (Fig. 5¢).

4. Discussion

Juvenile capsaicin desensitization caused long-lasting disturbances
in different physiological parameters; i.e. increased carrageenan-
induced edema, morphine sensitivity and urinary bladder capacity
were observed. It also caused significant deterioration in memory func-
tion, thermoregulation and motor activity under freely moving condi-
tions, but no disturbances of the sensory gating were observed.

The persistent changes in wiping behavior of rats treated with the
described protocol provide behavioral verification of the efficiency of
capsaicin treatment in juvenile rats. We did not observe significant al-
terations in acute and inflammatory pain sensitivities in these animals,
which is in agreement with earlier data obtained in neonatal or adult
desensitized rats [6,47]. It is assumed that alterations in capsaicin-
insensitive neurons and/or reorganization of the CNS may contribute
to the normal pain sensitivities in capsaicin-treated animals [23,47].
However, the antinociceptive effect of morphine was enhanced and
prolonged during joint inflammation in both mechanical and thermal
tests. Only one study investigated the antinociceptive action of mor-
phine in inflammatory pain, which found that morphine causes a great-
er effect in the inflamed than in the non-inflamed paw in control rats,
and this difference is absent in capsaicin-treated animals [3]. We
found a similar phenomenon in our model, as well as a prolonged effect
of morphine. Opioid receptor binding studies showed that the number
of binding sites and binding affinity in the dorsal horn remained unal-
tered after adult capsaicin treatment, but were decreased by neonatal
capsaicin exposure [9,24]. The paradoxical finding that desensitization
enhances the effects of morphine might be due to the decreased noci-
ceptive input to dorsal horn neurons because of the absence of TRPV1-
expressing afferent fibers. Regarding the increased vascular permeabil-
ity after capsaicin desensitization, our data are in agreement with those
of Helyes et al. [21], and these results may be explained by a lack of so-
matostatin release from primary sensory neurons.

A considerable amount of evidence indicates that capsaicin-sensitive
mechanisms regulate the micturition threshold by relaying information
to the CNS about the volume of fluid present in the bladder [5,24,30,37].
Both neonatal and adult capsaicin treatments lead to an impairment of
urinary bladder function, such as an increased threshold for micturition
or a reduced frequency of micturition contractions [26,37]. Neonatal
and adult capsaicin desensitization leads to increased bladder capacity
detected by the cystometrographic method [5,37]. Almost 20 years
ago, we described a simple, noninvasive and reliable ultrasonographic
method for the determination of urinary bladder capacity in anesthe-
tized rats [28]. Our in vivo results revealed that the bladder capacity is
significantly larger in juvenile desensitized rats compared to the control
animals. Additionally, increased bladder volume was also observed
5 weeks after adult capsaicin desensitization in rats (RV: 0.25 £ 0.012
and 0.33 £ 0.014, control vs desensitized animals). Thus, capsaicin de-
sensitization applied at any age results in enhanced bladder capacity,
suggesting that sensory transmission from the bladder in the micturi-
tion reflex depends on TRPV1 receptors at all stages of development.

Ample data are available on the effects of activation or desensitiza-
tion of TRPV1 receptors on various CNS structures and functions, but
the results are inconsistent. The majority of the neurons may be spared
by the protective effects of exogenous nerve growth factor, and also
markers that are associated with CNS neurons are unchanged after neo-
natal capsaicin administration [29,42]. It seems that TRPV1 receptors
comprise a neuromodulatory system in the brain, operated by
endovanilloids [13,34]. Their activation appears to be anxiogenic,
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while their pharmacological blockade seem to bring about an anxiolytic
effect [14,36].

Prepulse inhibition is impaired in several neuropsychiatric disorders,
including schizophrenia [52]. Only a few studies investigated the role of
TRPV1 receptors in sensory gating. It has been shown that neither
capsazepine, a TRPV1 receptor antagonist, nor cannabidiol (a TRPV1 re-
ceptor agonist) affected PPI by themselves, but cannabidiol reversed the
NMDA-receptor antagonist-induced (MK-801) disruption of PPI and
capsazepine prevented this effect [35]. In contrast, a more recent study
found disrupted PPI after cannabidiol administration in rats, but it had
no effect on the MK-801-induced disruption of PPI[19]. The only available
study that investigated the effect of neonatal capsaicin desensitization
supports our finding that desensitization has no effect on PPI [8]. These
data suggest that TRPV1 receptors do not directly interfere with normal
sensory-motor gating, but further studies are required to reveal the effects
of capsaicin desensitization on PPI in different conditions.

We found that the capsaicin-desensitized animals showed increased
activity under different conditions as observed with continuous telem-
etry, while no activity changes were observed during the NOR test in the
open field when observed for short periods only. Impairment of motor
behavior is also an important sign of schizophrenia: motor agitation
and reduced motor activity are both observed [56]. Both the dopami-
nergic and the glutamatergic systems in the prefrontal and subcortical
areas are involved in these abnormalities [12]. Many dopaminergic
cells in the mesencephalon are TRPV1-immunopositive [32,38,42],
and the activation of TRPV1 receptors in the midbrain ventral tegmen-
tum transiently increased dopamine release in the nucleus accumbens
[39]. There are studies indicating that motor activity can be suppressed
by the activation of TRPV1 receptors, and these effects were reversed by
capsazepine [15,46]. Findings about the effect of capsaicin desensitiza-
tion on motor activity are inconsistent. No major differences were ob-
served between capsaicin- or vehicle-treated animals in spontaneous
and novelty-induced grooming, or in open-field exploration after either
neonatal or adult capsaicin desensitization observed during a short pe-
riod [11,36]. Since we did not find significant differences in the activity
in NOR test paradigm either, we suppose that brief investigation in
these tests are not enough to reveal the fine disturbance in motor activ-
ity. A recent study found that TRPV1 knockout animals showed slightly
increased motor activity, as measured with the Mini Mitter method
[17]. Our results also showed an enhanced motor activity in juvenile
desensitized animals during their active phase, similarly to the pattern
seen in schizophrenia. These data, together with earlier results, suggest
that capsaicin desensitization disturbs the motor behavior for a long pe-
riod, and as a putative explanation it is proposed that a tonic activation
of TRPV1 channels suppresses the general locomotor activity.

The effect of capsaicin desensitization on thermoregulation was in-
vestigated by several groups in anesthetized or restrained animals, but
only scarce data are available on measurements under freely moving
conditions [33,51,54]. Changes in this parameter can be also important
since impairment in thermoregulation was observed in schizophrenic
patients [10,14,22,49]. Activation of the TRPV1 receptors in the preoptic
area caused hypothermia and enhanced frequency of both glutamater-
gic and GABAergic postsynaptic currents [1,24,31]. However, it has to
be kept in mind that investigation of the effect of capsaicin on thermo-
regulation is complicated by the fact that both peripheral C-fiber
warmth receptors and central thermosensitive neurons are affected by
the drug. Plenty of studies are available on the changes of thermoregu-
lation after neonatal or adult capsaicin desensitization in restrained an-
imals — with inconsistent results [14,27,51,55]. Two studies in adult
desensitized mice or rats with telemetry showed that capsaicin desensi-
tization significantly increases the core temperature and results in a
marked deficit in heat tolerance [43,54]. We also found more pro-
nounced changes in the warm than in the cold condition. Since motor
activity increases body temperature, we suggest that body temperature
increase in different conditions might be due to, at least partially, hyper-
activity resulting from capsaicin desensitization.

Learning impairment was found in the desensitized group with the
NOR test, a test which assesses what is a possible analog of declarative
memory in humans [16,59]. Cognitive impairment is a well-known
symptom of schizophrenia, and the extensive reduction of afferentation,
together with the damage to the areas involved in memory processes
should consequently bring about cognitive impairment after capsaicin
desensitization. Several earlier studies suggested that TRPV1 receptors
might play an important role in memory functions, mainly at the hippo-
campal level, but the results are controversial [14,40,57]. TRPV1 recep-
tor activation can modify long term potentiation, and it is damaged in
TRPV1-deficient mice [4,18,40]. Rats treated with capsaicin as neonates
had reduced hippocampal volume and cortical thickness and they ex-
hibited signs of learning impairment [6,40,45]. To our knowledge, this
study is the first to investigate the effects of capsaicin desensitization
on NOR test, and the results obviously support the role of TRPV1 recep-
tors in memory functions.

5. Conclusion

The significant changes in sensory functions (e.g. wiping response,
morphine efficiency, urinary bladder capacity) in juvenile desensitized
animals proved that this treatment protocol may provide an appropri-
ate model for the investigation of the effects of capsaicin desensitization
before the completion of development. Our study described the effects
of capsaicin desensitization on some parameters associated with schizo-
phrenia, such as thermoregulation, memory functions and motor activ-
ity. In agreement with Chahl [7], it can be concluded that this animal
model can simulate some symptoms of schizophrenia. We suppose
that juvenile capsaicin desensitization together with other treatments
(e.g. social isolation or NMDA receptor antagonist treatment) could fur-
ther improve this model. Clearly, more work is needed to fully appreci-
ate the role of TRPPV1 receptors in the CNS and, hence, the potential
central consequence of the pharmacological targeting of this channel
with either agonists or antagonists with therapeutic activity.
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