631 research outputs found

    Climate change, young people, and the IPCC: the role of citizen science

    Get PDF
    This commentary suggests that undertaking citizen science research with young people has the potential to play a significant role in contributing to the IPPC and related UN research and policy processes around climate change. Further, citizen science engagement can educate and empower children and young people in and through research by involving wider communities and groups in data collection, communication, and engagement. A persuasive body of literature suggests that children and youth can be and ought to be included in citizen science projects and that young people ought to and can have a greater say in their environmental and climate lives and futures. There is acknowledgment that certain populations, including young people, have been excluded from participation in citizen science, and strategies need to be developed to be more inclusive. Moreover, through inclusion of youth, there are opportunities for intergeneration collaboration leading to potential solutions. Our commentary is a call for the IPCC to be much more open and creative in its knowledge production work and to engage young people in climate-related citizen science

    Spin-orbit coupled j=1/2 iridium moments on the geometrically frustrated fcc lattice

    Full text link
    Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled j=1/2 iridium moments on the three-dimensional, geometrically frustrated, face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear A-type antiferromagnetism, stripe order with moments along the [111]-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures. We argue that existing thermodynamic data on these iridates underscores the presence of a dominant Kitaev exchange, and also suggest a resolution to the puzzle of why La2ZnIrO6 exhibits `weak' ferromagnetism, but La2MgIrO6 does not.Comment: 5 pages, 5 figs, significantly revised to address referee comments, to appear in PRB Rapid Com

    The lattice Schwarzian KdV equation and its symmetries

    Full text link
    In this paper we present a set of results on the symmetries of the lattice Schwarzian Korteweg-de Vries (lSKdV) equation. We construct the Lie point symmetries and, using its associated spectral problem, an infinite sequence of generalized symmetries and master symmetries. We finally show that we can use master symmetries of the lSKdV equation to construct non-autonomous non-integrable generalized symmetries.Comment: 11 pages, no figures. Submitted to Jour. Phys. A, Special Issue SIDE VI

    Tenzing and the importance of tool development for research efficiency

    Get PDF
    The way science is done is changing. While some tools are facilitating this change, others lag behind. The resulting mismatch between tools and researchers' workflows can be inefficient and delay the progress of research. As an example, information about the people associated with a published journal article was traditionally handled manually and unsystematically. However, as large-scale collaboration, sometimes referred to as “team science,” is now common, a more structured and easy-to-automate approach to managing meta-data is required. In this paper we describe how the latest version of tenzing (A.O. Holcombe et al., Documenting contributions to scholarly articles using CRediT and tenzing, PLOS One 15(12) (2020)) helps researchers collect and structure contributor information efficiently and without frustration. Using tenzing as an example, we discuss the importance of efficient tools in reforming science and our experience with tool development as researchers.</p

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl
    • 

    corecore