20 research outputs found

    Genomic Adaptations to Salinity Resist Gene Flow in the Evolution of Floridian Watersnakes

    Full text link
    The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow

    A Consensus List of Ultrasound Competencies for Graduating Emergency Medicine Residents

    Get PDF
    Objectives: Emergency ultrasound (EUS) is a critical component of emergency medicine (EM) resident education. Currently, there is no consensus list of competencies for EUS training, and graduating residents have varying levels of skill and comfort. The objective of this study was to define a widely accepted comprehensive list of EUS competencies for graduating EM residents through a modified Delphi method. Methods: We developed a list of EUS applications through a comprehensive literature search, the American College of Emergency Physicians list of core EUS benchmarks, and the Council of Emergency Medicine Residency-Academy of Emergency Ultrasound consensus document. We assembled a multi-institutional expert panel including 15 faculty members from diverse practice environments and geographical regions. The panel voted on the list of competencies through two rounds of a modified Delphi process using a modified Likert scale (1 = not at all important, 5 = very important) to determine levels of agreement for each application-with revisions occurring between the two rounds. High agreement for consensus was set at \u3e80%. Results: Fifteen of 15 panelists completed the first-round survey (100%) that included 359 topics related to EUS. After the first round, 195 applications achieved high agreement, four applications achieved medium agreement, and 164 applications achieved low agreement. After the discussion, we removed three questions and added 13 questions. Fifteen of 15 panelists completed the second round of the survey (100%) with 209 of the 369 applications achieving consensus. Conclusion: Our final list represents expert opinion on EUS competencies for graduating EM residents. We hope to use this consensus list to implement a more consistent EUS curriculum for graduating EM residents and to standardize EUS training across EM residency programs

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Recognition of stream drying based on benthic macroinvertebrates: a new tool in Central Europe

    Get PDF
    Many streams in the extensive Central European region have an intermittent flow regime. Conventional hydrological methods used to identify zero-flow conditions, and in particular drying events, have limited use when assessing large areas dominated by low-order streams. We developed a novel multimetric index to recognise antecedent stream drying based on the analysis of benthic macroinvertebrate communities. The data used to develop the index were collected in pristine streams with different flow permanence regimes between 2012 and 2014, using standard sampling methods for ecological status assessment. The data include 64 perennial, 19 near-perennial and 27 intermittent benthic macroinvertebrate samples. Metrics considered for the index included variables based on (i) the occurrence of indicator taxa, (ii) the proportion of biological and ecological traits, and (iii) structural community metrics. Linear discriminant analysis identified the metric combinations that best discriminated among the three flow permanence categories. Different metrics were used in the final multimetric index calculation for the autumn and spring season that followed stream drying. In both seasons, the index included the proportion of indicator taxa and the proportion of taxa with high body flexibility. In addition, the autumn index included the proportion of taxa with a preference for organic substrates, whereas in spring the index included total abundance. Independent data from regulatory monitoring activity were used to validate the accuracy of the index. The correct classification of independent samples was 92% and 96% for samples from perennial and non-perennial sites, respectively. The index can be calculated using data collected by routine monitoring programmes used to assess ecological status and provides information about stream intermittence where conventional hydrological monitoring is limited. As intermittent streams increase in extent in global regions including Central Europe, the tool may be of particular interest to those who use invertebrates to monitor or manage these ecosystems

    Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies

    No full text
    1.Temporary streams are dynamic ecosystems in which mosaics of flowing, ponded and dry habitats support high biodiversity of both aquatic and terrestrial species. Species interact within habitats to perform or facilitate processes that vary in response to changing habitat availability. A natural capital approach recognizes that, through such processes, the ‘natural assets’ of all ecosystems deliver services that benefit people.2.The ecosystem services of temporary streams remain largely unexplored, in particular those provided during ponded and dry phases. In addition, recent characterizations have focused on dryland systems, and it remains unclear how service provision varies among different climatic regions, or between developed and developing economies.3.We use evidence from interdisciplinary literature to examine the ecosystem services delivered by temporary streams, including the regulating, provisioning and cultural services provided across the continuum from flowing to dry conditions. We focus on service provision during dry phases and wet–dry transitions, across regions with contrasting climates and economic development.4.Provision of individual services in temporary streams may be reduced, enhanced or changed by surface water loss. Services enhanced by dry phases include provision of higher‐quality subsurface drinking water and unique opportunities for recreation. Shifts between dry and wet phases enable groundwater recharge that mitigates water scarcity, and grant dry‐phase access to sediments deposited during flowing phases. However, the accessibility and thus perceived value of these and other services varies considerably among regions. In addition, accessing provisioning services requires careful management to promote sustainable resource use and avoid ecological degradation.5.We highlight the need for environmental managers to recognize temporary streams as aquatic–terrestrial ecosystems, and to take actions promoting their diversity within functional socio‐ecological systems that deliver unique service bundles characterized by variability and differing availability in space and time

    Climatic aridity increases temporal nestedness of invertebrate communities in naturally drying rivers

    No full text
    Climate change is altering the water cycle globally, increasing the frequency and magnitude of floods and droughts. An outstanding question is whether biodiversity responses to hydrological disturbance depend on background climatic context – and if so, which contexts increase vulnerability to disturbance. Answering this question requires comparison of organismal responses across environmental gradients. However, opportunities to track disturbed communities against an undisturbed baseline remain rare. Here we gathered a global dataset capturing responses of aquatic invertebrate communities to river drying, which includes 112 sites spanning a gradient of climatic aridity. We measured the effects of river drying on taxonomic richness and temporal ÎČ-diversity (turnover and nestedness components). We also measured the relative abundance of aquatic invertebrates with strategies that confer resilience (or resistance) to drying. Contrary to our expectations, we found that taxonomic richness recovered from drying similarly across the aridity gradient. The turnover component of ÎČ-diversity (i.e. species replacements over time) largely accounted for differences in community composition before versus after drying. However, increasing aridity was associated with greater nestedness-driven compositional changes at intermittent sites – that is, after drying communities became subsets of those before drying. These results show that climatic context can explain variation in community responses to the same hydrological disturbance (drying), and suggest that increased aridity will constrain biodiversity responses at regional scales. Further consideration of the climatic context in hydroecological research may help improve predictions of the local impacts of hydrological disturbance by identifying climate regions where communities are more (or less) sensitive to extremes, including river drying events

    The state of gender inclusion in the point-of-care ultrasound community

    No full text
    BACKGROUND: There are 5000-10,000 snake envenomations annually in the United States. Fortunately, few are fatal. In this study we review the epidemiology of fatal snakebites. METHODS: Native snakebite cases from the American Association of Poison Control Centers (AAPCC) National Poison Data System from 1989 to 2018 were reviewed. Additional cases that were not reported to the AAPCC were identified by reviewing Wikipedia and by searching PubMed and online news outlets using various combinations of relevant keywords. RESULTS: We identified 101 fatal bites from native snakes. Rattlesnakes accounted for 74 (90.2%) of the 82 deaths for which the species was known or which occurred where rattlesnakes are the only native crotalids. There were five fatalities attributed to copperheads, two due to cottonmouths, and one caused by an eastern coral snake. Males were disproportionately affected. The median age for victims was 40 years old. In cases for which data were available, many of the snake interactions were intentional, e.g. religious services, animal husbandry, and attempting to kill the snake. CONCLUSIONS: Death following envenomation from a native U.S. snake is unlikely, particularly if medical attention is sought promptly. Rattlesnake envenomations are more likely to be fatal than bites from other species. Intentionally engaging with a venomous snake raises the risk of incurring a fatal bite, as does concurrent alcohol or drug use. Age less than 12 years old does not appear to be a risk factor for a fatal outcome, while elderly patients may have a slightly increased risk of death
    corecore