15 research outputs found

    Cigarette Smoke Affects Keratinocytes SRB1 Expression and Localization via H2O2 Production and HNE Protein Adducts Formation

    Get PDF
    Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H2O2) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H2O2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake

    Numerical methods that work

    No full text

    Numerical methods that work

    No full text

    Recurrence relations for the Fresnel integral ∫ ∞

    No full text

    Resonant Scattering of X-ray Emission Lines in the Hot Intergalactic Medium

    No full text
    While very often a hot intergalactic medium (IGM) is optically thin to continuum radiation, the optical depth in resonant lines can be of order unity or larger. Resonant scattering in the brightest X-ray emission lines can cause distortions in the surface brightness distribution, spurious variations in the abundance of heavy elements, changes in line spectral shapes and even polarization of line emission. The magnitude of these effects not only depends on the density, temperature and ionization state of the gas, but is also sensitive to the characteristics of the gas velocity field. This opens a possibility to use resonant scattering as a convenient and powerful tool to study IGM properties. We discuss the application of these effects to galaxy clusters.Comment: 18 pages, 10 figure, to be published in Space Science Reviews, "X-ray Spectroscopy", Editors Jelle Kaastra and Frits Paerel
    corecore