54 research outputs found
Platform-directed allostery and quaternary structure dynamics of SAMHD1 catalysis
SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2’-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes
Increased phage resistance through lysogenic conversion accompanying emergence of monophasic Salmonella Typhimurium ST34 pandemic strain
Salmonella enterica serovar Typhimurium (S. Typhimurium) comprises a group of closely related human and animal pathogens that account for a large proportion of all Salmonella infections globally. The epidemiological record of S. Typhimurium in Europe is characterized by successive waves of dominant clones, each prevailing for approximately 10–15 years before replacement. Succession of epidemic clones may represent a moving target for interventions aimed at controlling the spread and impact of this pathogen on human and animal health. Here, we investigate the relationship of phage sensitivity and population structure of S. Typhimurium using data from the Anderson phage typing scheme. We observed greater resistance to phage predation of epidemic clones circulating in livestock over the past decades compared to variants with a restricted host range implicating increased resistance to phage in the emergence of epidemic clones of particular importance to human health. Emergence of monophasic S. Typhimurium ST34, the most recent dominant multidrug-resistant clone, was accompanied by increased resistance to phage predation during clonal expansion, in part by the acquisition of the mTmII prophage that may have contributed to the fitness of the strains that replaced ancestors lacking this prophage
Increased phage resistance through lysogenic conversion accompanying emergence of monophasic Salmonella Typhimurium ST34 pandemic strain
Salmonella enterica serovar Typhimurium ( S. Typhimurium) comprises a group of closely related human and animal pathogens that account for a large proportion of all Salmonella infections globally. The epidemiological record of S. Typhimurium in Europe is characterized by successive waves of dominant clones, each prevailing for approximately 10-15 years before replacement. Succession of epidemic clones may represent a moving target for interventions aimed at controlling the spread and impact of this pathogen on human and animal health. Here, we investigate the relationship of phage sensitivity and population structure of S. Typhimurium using data from the Anderson phage typing scheme. We observed greater resistance to phage predation of epidemic clones circulating in livestock over the past decades compared to variants with a restricted host range implicating increased resistance to phage in the emergence of epidemic clones of particular importance to human health. Emergence of monophasic S. Typhimurium ST34, the most recent dominant multidrug-resistant clone, was accompanied by increased resistance to phage predation during clonal expansion, in part by the acquisition of the mTmII prophage that may have contributed to the fitness of the strains that replaced ancestors lacking this prophage
Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs
Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity
NGTS-28Ab: A short period transiting brown dwarf
We report the discovery of a brown dwarf orbiting a M1 host star. We first
identified the brown dwarf within the Next Generation Transit Survey data, with
supporting observations found in TESS sectors 11 and 38. We confirmed the
discovery with follow-up photometry from the South African Astronomical
Observatory, SPECULOOS-S, and TRAPPIST-S, and radial velocity measurements from
HARPS, which allowed us to characterise the system. We find an orbital period
of ~1.25 d, a mass of 69.0+5.3-4.8 MJ, close to the Hydrogen burning limit, and
a radius of 0.95 +- 0.05 RJ. We determine the age to be >0.5 Gyr, using model
isochrones, which is found to be in agreement with SED fitting within errors.
NGTS-28Ab is one of the shortest period systems found within the brown dwarf
desert, as well as one of the highest mass brown dwarfs that transits an M
dwarf. This makes NGTS-28Ab another important discovery within this scarcely
populated region.Comment: 20 pages (inc. appendices), 16 figures, accepted for publication in
MNRA
NGTS-28Ab:a short period transiting brown dwarf
We report the discovery of a brown dwarf orbiting a M1 host star. We first identified the brown dwarf within the Next Generation Transit Survey data, with supporting observations found in TESS sectors 11 and 38. We confirmed the discovery with follow-up photometry from the South African Astronomical Observatory, SPECULOOS-S, and TRAPPIST-S, and radial velocity measurements from HARPS, which allowed us to characterize the system. We find an orbital period of ∼1.25 d, a mass of 69.0+5.3-4.8 MJ, close to the hydrogen burning limit, and a radius of 0.95 ± 0.05 RJ. We determine the age to be >0.5 Gyr, using model isochrones, which is found to be in agreement with spectral energy distribution fitting within errors. NGTS-28Ab is one of the shortest period systems found within the brown dwarf desert, as well as one of the highest mass brown dwarfs that transits an M dwarf. This makes NGTS-28Ab another important discovery within this scarcely populated region.</div
The interactions of disability and impairment
Theoretical work on disability is going through an expansive period, built on the growing recognition of disability studies as a discipline and out of the political and analytical push to bring disability into a prominent position within accounts of the intersecting social categories that shape people's lives. A current debate within critical disability studies is whether that study should include impairment and embodiment within its focus. This article argues it should and does so by drawing from symbolic interactionism and embodiment literatures in order to explore how differences in what bodies can do-defined as impairments-come to play a role in how people make sense of themselves through social interaction. We argue that these everyday interactions and the stories we tell within them and about them are important spaces and narratives through which impairment and disability are produced. Interactions and stories are significant both in how they are shaped by wider social norms, collective stories and institutional processes, and also how they at times can provide points of resistance and challenges to such norms, stories and institutions. Therefore, the significance of impairment and interaction is the role they play in both informing self-identity and also broader dynamics of power and inequality
An ultrahot Neptune in the Neptune desert
About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
- …