11 research outputs found

    The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance

    Get PDF
    Nucleoside reverse transcriptase (RT) inhibitors of HIV block viral replication through the ability of HIV RT to incorporate chain-terminating nucleotide analogs during viral DNA synthesis. Once incorporated, the chain-terminating residue must be removed before DNA synthesis can continue. Removal can be accomplished by the excision activity of HIV RT, which catalyzes the transfer of the 3′-terminal residue on the blocked DNA chain to an acceptor substrate, probably ATP in most infected cells. Mutations of RT that enhance excision activity are the most common cause of resistance to 3′-azido-3′-deoxythymidine (AZT) and exhibit low-level cross-resistance to most other nucleoside RT inhibitors. The resistance to AZT is suppressed by a number of additional mutations in RT, most of which were identified because they conferred resistance to other RT inhibitors. Here we review current understanding of the biochemical mechanisms responsible for increased or decreased excision activity due to these mutations

    Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay

    No full text
    Background: Saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is not insignificant, and procedures for reducing viral loads in the oral cavity have been proposed. Little research to date has been performed on the effect of mouthwashes on the SARS-CoV-2 virus, and some of their mechanisms of action remain unknown. Methods: SARS-CoV-2 positive nasopharyngeal swabs measured by RT-PCR were used for virucidal activity in a 1:1 ratio, with an incubation time of 1 min. The solutions used in this study were: iodopovidone (8 mg); * D-limonene, a terpene extracted from citrus peels (0.3%); † cetylpyridinium chloride (0.1%) (CPC); ‡ chlorhexidine gluconate (10%) (CHX); § a CPC (0.12%) and CHX (0.05%) containing formula; ** a formula containing essential oils; †† a CPC containing formula (0.07%); ‡‡ a D-limonene (0.2%) and CPC (0.05%) containing formula; §§ a solution containing sodium fluoride (0.05%) and CPC (0.075%); *** a solution containing CHX (0.12%) and; ††† a CHX (0.2%) containing formula. ‡‡‡ As a control reaction, saline solution or excipient solution (water, glycerin, citric acid, colorant, sodium citrate) was used. Conclusion: Within the limitations of this study, we can conclude that a mouthwash containing both D-limonene and CPC reduced the virucidal activity in about 6 logs (>99.999% reduction). Hence, establishing a clinical protocol for dentists is suggested, where all patients to be treated rinse pre-operatively with a mouthwash containing both D-limonene and CPC to reduce the likelihood of infection with SARS-CoV-2 for dentists. This is a relatively inexpensive way to reduce viral transmission of SARS-CoV-2 from infected individuals within the community. It is also a simple way to decrease infections from asymptomatic and pre-symptomatic patients

    Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase

    No full text
    In HIV-1, development of resistance to AZT (3=-azido-3=-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/ K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3= end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT’s RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.Spanish National Research Council (CSIC); Ministry of Science and Innovation of Spain (PID2019-104176RB-I00/AEI/10.13039/501100011033 awarded to L.M.-A.), and CSIC (2019AEP001 awarded to L.M.-A.). M.A.A. and A.J.A.-H. received support through cooperation grant 0103*2015*000033 of the Government of the Atlántico Department (Colombia) and the General Royalty System. An institutional grant of the Fundación Ramón Areces to the CBMSO is also acknowledge

    Anomaly Identification during Polymerase Chain Reaction for Detecting SARS-CoV-2 Using Artificial Intelligence Trained from Simulated Data

    No full text
    Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses

    Comparative Analysis of <i>In-House</i> RT-qPCR Detection of SARS-CoV-2 for Resource-Constrained Settings

    No full text
    We developed and standardized an efficient and cost-effective in-house RT-PCR method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated sensitivity, specificity, and other statistical parameters by different RT-qPCR methods including triplex, duplex, and simplex assays adapted from the initial World Health Organization- (WHO) recommended protocol. This protocol included the identification of the E envelope gene (E gene; specific to the Sarvecovirus genus), RdRp gene of the RNA-dependent RNA polymerase (specific for SARS-CoV-2), and RNase P gene as endogenous control. The detection limit of the E and the RdRp genes were 3.8 copies and 33.8 copies per 1 µL of RNA, respectively, in both triplex and duplex reactions. The sensitivity for the RdRp gene in the triplex and duplex RT-qPCR tests were 98.3% and 83.1%, respectively. We showed a decrease in sensitivity for the RdRp gene by 60% when the E gene acquired Ct values > 31 in the diagnostic tests. This is associated with the specific detection limit of each gene and possible interferences in the protocol. Hence, developing efficient and cost-effective methodologies that can be adapted to various health emergency scenarios is important, especially in developing countries or settings where resources are limited

    Genetic variation underpinning ADHD risk in a caribbean community

    Get PDF
    Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 10x-4), rs2282794-FGF1 (A allele; p = 1.33 10x-2), rs2122642-ADGRL3 (C allele, p = 3.5 10x-2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease

    Surface-enhanced Raman Spectroscopy in urinalysis of hypertension patients with kidney disease

    No full text
    Abstract Arterial hypertension (AH) is a multifactorial and asymptomatic disease that affects vital organs such as the kidneys and heart. Considering its prevalence and the associated severe health repercussions, hypertension has become a disease of great relevance for public health across the globe. Conventionally, the classification of an individual as hypertensive or non-hypertensive is conducted through ambulatory blood pressure monitoring over a 24-h period. Although this method provides a reliable diagnosis, it has notable limitations, such as additional costs, intolerance experienced by some patients, and interferences derived from physical activities. Moreover, some patients with significant renal impairment may not present proteinuria. Accordingly, alternative methodologies are applied for the classification of individuals as hypertensive or non-hypertensive, such as the detection of metabolites in urine samples through liquid chromatography or mass spectrometry. However, the high cost of these techniques limits their applicability for clinical use. Consequently, an alternative methodology was developed for the detection of molecular patterns in urine collected from hypertension patients. This study generated a direct discrimination model for hypertensive and non-hypertensive individuals through the amplification of Raman signals in urine samples based on gold nanoparticles and supported by chemometric techniques such as partial least squares-discriminant analysis (PLS-DA). Specifically, 162 patient urine samples were used to create a PLS-DA model. These samples included 87 urine samples from patients diagnosed with hypertension and 75 samples from non-hypertensive volunteers. In the AH group, 35 patients were diagnosed with kidney damage and were further classified into a subgroup termed (RAH). The PLS-DA model with 4 latent variables (LV) was used to classify the hypertensive patients with external validation prediction (P) sensitivity of 86.4%, P specificity of 77.8%, and P accuracy of 82.5%. This study demonstrates the ability of surface-enhanced Raman spectroscopy to differentiate between hypertensive and non-hypertensive patients through urine samples, representing a significant advance in the detection and management of AH. Additionally, the same model was then used to discriminate only patients diagnosed with renal damage and controls with a P sensitivity of 100%, P specificity of 77.8%, and P accuracy of 82.5%

    Cytokinesis-block micronucleus cytome (CBMN-CYT) assay biomarkers and telomere length analysis in relation to inorganic elements in individuals exposed to welding fumes

    No full text
    During the welding activities many compounds are released, several of these cause oxidative stress and inflammation and some are considered carcinogenic, in fact the International Agency for Research on Cancer established that welding fumes are carcinogenic to humans. The aim of the present study was to analyze the cytotoxic and genotoxic potential of exposure to welding fumes and to determine concentrations of metals in blood and urine of occupationally exposed workers. We included 98 welders and 100 non-exposed individuals. Our results show significant increase in the frequency of micronuclei (MN), nucleoplasmic bridges (NPB), nuclear buds (NBUD) and necrotic cells (NECR) in cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, as well as in the telomere length (TL) of the exposed individuals with respect to the non-exposed group. In the analysis of the concentrations of inorganic elements using PIXE method, were found higher concentrations of Cr, Fe and Cu in the urine, and Cr, Fe, Mg, Al, S, and Mn in the blood in the exposed group compared to the non-exposed group. A significant correlation was observed between MN and age and between NPB and years of exposure. Additionally, we found a significant correlation for TL in relation to MN, NPB, age and years of exposure in the exposed group. Interestingly, a significant correlation between MN and the increase in the concentration of Mg, S, Fe and Cu in blood samples of the exposed group, and between MN and Cr, Fe, Ni and Cu in urine. Thus, our findings may be associated with oxidative and inflammatory damage processes generated by the components contained in welding fumes, suggesting a high occupational risk in welding workers
    corecore