14 research outputs found

    Solution and Asymptotic Behavior for a Nonlocal Coupled System of Reaction-Diffusion

    Full text link
    This paper concerns with existence, uniqueness and asymptotic behavior of the solutions for a nonlocal coupled system of reaction-diffusion. We prove the existence and uniqueness of weak solutions by the Faedo-Galerkin method and exponential decay of solutions by the classic energy method. We improve the results obtained by Chipot-Lovato and Menezes for coupled systems. A numerical scheme is presented

    Size-structured populations: immigration, (bi)stability and the net growth rate

    Get PDF
    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin

    Sensitivity analysis of the recovery time for a population under the impact of an environmental disturbance

    Get PDF
    Wildlife populations are often affected by natural or artificial disasters that reduce their vital rates leading to drastic fluctuations in population dynamics. We use a stage‐structured matrix model to study the recovery process of a population given an environmental disturbance. We focus on the time it takes the population to recover to its pre‐event level and develop general formulas to calculate the sensitivity and elasticity of the recovery time to changes in the initial population, vital rates, and event severity. Our results suggest that the recovery time is independent of the initial population size but it is sensitive to the initial structure. Moreover, the recovery time is more sensitive to reductions in vital rates than to the duration of the impact of the event. We explore an application of the model to the sperm whale population in Gulf of Mexico following a disturbance such as the Deepwater Horizon oil spill. Recommendations for Resource Managers Understanding a population's recovery process following a disturbance is important for management and conservation decisions. This study establishes a general framework that makes it possible to identify the key components in the recovery process. When applied to a sperm whale population, the recovery time appears to be most sensitive to changes in survival. In addition, the magnitude of impact of a disturbance may have a greater impact on the recovery time than the duration of impact of the disturbance

    Global analysis of multi-strains SIS, SIR and MSIR epidemic models

    No full text
    International audienceWe consider SIS, SIR and MSIR models with standard mass action and varying population, with nn different pathogen strains of an infectious disease. We also consider the same models with vertical transmission. We prove that under generic conditions a competitive exclusion principle holds. To each strain a basic reproduction ratio can be associated. It corresponds to the case where only this strain exists. The basic reproduction ratio of the complete system is the maximum of each individual basic reproduction ratio. Actually we also define an equivalent threshold for each strain. The winner of the competition is the strain with the maximum threshold. It turns out that this strain is the most virulent, i.e., this is the strain for which the endemic equilibrium gives the minimum population for the susceptible host population. This can be interpreted as a pessimization principle.On considère les modèles SIS, SIR et MSIR avec la loi de l'action de masse standard et une population non constante, avec n différentes souches de pathogènes. Nous considérons aussi les même modèles avec transmission verticale. On prouve que sous une condition générique, le principe de compétition exclusive est vérifié. Pour chaque souche, un nombre de reproduction de base est associé. Il correspond au cas où seule cette souche existe. Le nombre de reproduction de base du système complet est le maximum de tous les nombres de reproduction de base pris individuellement. Nous définissons aussi un seuil équivalent pour chaque souche. La souche qui gagne la compétition est celle qui maximise le nombre de reproduction de base. C'est aussi la souche la plus virulente, i.e., c'est la souche pour laquelle l'équilibre endémique donne le minimum des individus susceptibles dans la population hôte. C'est le principe de pessimisation
    corecore