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Abstract
Wildlife populations are often affected by natural or artifi-

cial disasters that reduce their vital rates leading to dras-

tic fluctuations in population dynamics. We use a stage-

structured matrix model to study the recovery process of

a population given an environmental disturbance. We focus

on the time it takes the population to recover to its pre-event

level and develop general formulas to calculate the sensitiv-

ity and elasticity of the recovery time to changes in the ini-

tial population, vital rates, and event severity. Our results

suggest that the recovery time is independent of the ini-

tial population size but it is sensitive to the initial structure.

Moreover, the recovery time is more sensitive to reductions

in vital rates than to the duration of the impact of the event.

We explore an application of the model to the sperm whale

population in Gulf of Mexico following a disturbance such

as the Deepwater Horizon oil spill.

Recommendations for Resource Managers
• Understanding a population's recovery process following

a disturbance is important for management and conserva-

tion decisions.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in

any medium, provided the original work is properly cited.

Copyright © 2018 The Authors. Natural Resource Modeling Published by Wiley Periodicals, Inc.
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• This study establishes a general framework that makes it

possible to identify the key components in the recovery

process.

• When applied to a sperm whale population, the recovery

time appears to be most sensitive to changes in survival.

In addition, the magnitude of impact of a disturbance may

have a greater impact on the recovery time than the dura-

tion of impact of the disturbance.

K E Y W O R D S
environmental disturbance, lethal effects, matrix calculus, population

recovery, sensitivity analysis, sperm whales, sublethal effects

1 INTRODUCTION

Over the centuries, the rate at which human activity affects the ecosystem has been accelerating

(Vitousek, Mooney, Lubchenco, & Melillo, 1997). The ever increasing human population size and

higher demands for resources are reducing biological diversity, causing climate change, and trans-

forming the landscape. In particular, rates of species extinction are now on the order of 100 to 1000

times those before humanity's dominance of Earth (Pimm, Russell, Gittleman, & Brooks, 1995). Direct

impacts on wildlife populations come in the form of human-caused disasters (such as oil spills), overex-

ploitation, invasive species introduced by human movement, and habitat fragmentation or degradation

(Fahrig, 2017; Hutchings, 2005; Vitousek et al., 1997). In addition, indirect impacts such as shrinking

habitat, climate change, and chemical pollution harm species survival in the long term (Frumhoff, 1995;

Gibbons et al., 2000; Isaak et al., 2010). The increasing awareness of this situation has inspired more

and more conservation efforts to protect wildlife and aid the recovery of threatened species (Brown,

2010). Mathematical modeling is a powerful tool for understanding wildlife population dynamics and

setting guidelines for such conservation efforts. The development of mathematical models that can be

parameterized by empirically derived data is particularly important.

Numerous population models have been developed to explain and predict population dynamics and

explore efficient management strategies for at risk species (Adams, Banks, Banks, & Stark, 2005;

Baveco, & De Roos, 1996; Cushing, & Zhou, 1994). Among these, matrix population models are very

popular with both mathematicians and biologists. This is not only because of their simplicity and abil-

ity to directly link vital rates with population dynamics (Fieberg & Ellner, 2001), but also because

there exists well-established theories of perturbation analysis and stability analysis using matrix pop-

ulation models (Caswell, 2001, 2012; Shyu & Caswell, 2014). For instance, Wisdom and Mills (1997)

used matrix population models to study the declining greater prairie-chickens population. Applying

sensitivity analysis, they concluded that the combination of nest success and brood survival is the most

effective way to increase the growth rate of the population. In another study, Bridges, and Carroll (2000)

used a matrix population model to project the ecological effects of chronic sediment toxicity on the

estuarine amphipod Leptocheirus plumulosus. Both studies assumed that the environment was constant

and focused on examining the asymptotic growth rate 𝜆 and its sensitivity to model parameters, which

provides useful information such as the population trend and reveals the most important life stages of
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the population. However, such analysis cannot be applied to environment dependent matrix population

models in which the projection matrices change over time. In this paper, we introduce a new population

endpoint, the recovery time, which can be useful in such situations.

For a slow growing population, a small environmental disturbance may result in a declining popula-

tion (Chiquet, Ma, Ackleh, Pal, & Sidorovskaia, 2013). In this paper, we examine the recovery ability,

the time it takes for such population to recover, and how different factors contribute to the recovery

process. Understanding a population's recovery process following a disturbance can aid in manage-

ment decisions, such as establishing regulations on harvesting or habitat quality, and may also help in

predicting what may happen to a population should another disturbance occur. There are various mea-

sures for population recovery including the species reappearance, the return to predisturbance total

density or biomass, and the average size of individuals in a species (Detenbeck, DeVore, Niemi, &

Lima, 1992). Here, we define the recovery time as the time it takes for an affected population to reach

its predisturbance level. Naturally, there are many factors affecting the recovery time. The vital rates

during the recovery process are particularly critical to the length of recovery time since the impact of

many other factors is realized through them. By estimating the recovery time for different values of

vital rates, one can better understand the recovery process and subsequently choose reasonable inter-

vention strategies. We derive formulas for the sensitivity of the recovery time to changes in the initial

population structure, vital rates, and environmental factors. This sensitivity analysis pinpoints which

factors contribute the most to the recovery process. The techniques used in the sensitivity derivations

are general enough to be applied to various models. They can also be used to obtain the mean recovery

time and upper and lower estimates of the recovery time for a population experiencing demographic

stochasticity, provided that the recovery probability is equal to or near one. Thus, these formulas pro-

vide an alternative to stochastic simulations that has the advantage of being computationally efficient

and does not require solving the stochastic model thousands of times to generate a mean recovery time.

This paper is organized as follows. In Section 2, we present a model for a structured population

whose vital rates are proportionally reduced for a specified amount of time due to an environment

disturbance, after which they return to their pre-event levels. In Section 3, we establish formulas to

calculate the sensitivity (elasticity) of the recovery time to the initial population structure, the vital

rates, and the environmental parameters. We also derive the formulas to calculate the mean and variance

of the population with demographic stochasticity. In Section 4, we apply our results to consider the

potential effect of the Deepwater Horizon (DWH) oil spill on the sperm whale population in Gulf of

Mexico. In addition, we consider the effect of demographic stochasticity on the recovery time and

calculate the confidence interval of the recovery time and its sensitivity or elasticity with respect to the

environmental parameters under different scenarios. Finally, in Section 5, we summarize our results

and discuss their strength and limitations.

2 MODEL FORMULATION

We consider a population described by a discrete-time, stage-structured matrix model. We divide the

female population at time 𝑡 into 𝑚 stages described by the vector 𝐧(𝑡) ∶= [𝑛1(𝑡), 𝑛2(𝑡),… , 𝑛𝑚(𝑡)]⊺,

where ⊺ denotes the transpose of a vector. Given the population at time 𝑡, the population at time 𝑡 + 1
is determined by the projection matrix 𝐀[𝜽(𝜖(𝑡)), 𝜖(𝑡)]. Here, 𝜖(𝑡) describes the environment at time 𝑡

and 𝜽(𝜖(𝑡)) represents the environment-dependent vital rates. This leads to the nonautonomous matrix

model

𝐧(𝑡 + 1) = 𝐀[𝜽(𝜖(𝑡)), 𝜖(𝑡)]𝐧(𝑡), (1)
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where 𝑡 = 0, 1, 2,…. Iterating Equation (1), we have 𝐧(𝑡 + 1) =
∏𝑡

𝑠=0 𝐀[𝜽(𝜖(𝑠)), 𝜖(𝑠)]𝐧(0).
We set the time when an environmental disturbance happens to be 𝑡 = 0. Following a disturbance,

we assume that the population experiences reductions in vital rates. These vital rates are allowed to

recover over time as the impact of the disturbance vanishes. We assume that the vital rates prior to the

disturbance yield a growing population, since the population will go extinct otherwise even without an

external disturbance. We also assume that these reductions are sufficiently large to cause a declining

population. We focus on the transient population dynamics and consider the simple case where no

additional catastrophic event happens during the recovery process.

A1. Assume the dominant eigenvalue of 𝐀[𝜽(𝜖(𝑡)), 𝜖(𝑡)] is greater than one in the absence of a dis-
turbance and is less than one at 𝜖(0).

In general, the recovery of the vital rates approximately follows a sigmoid curve, but as shown in

Ackleh et al. (2017), a constant reduction followed by the complete recovery of the vital rates provides

lower and upper bound estimates for such sigmoid functions. Thus, to model the process of environment

recovery after an event, we consider the following step recovery function:

𝜖(𝑡) ∶=
{

𝜖0, 0 ≤ 𝑡 < 𝑇𝐶

0, 𝑡 ≥ 𝑇𝐶,
(2)

where 𝜖0 represents the proportion of reduction in the vital rates caused by the event. For instance, 𝜖0
could represent reductions caused by abnormally high toxicant levels due to an oil spill or low food

sources due to flooding. In general, 𝑇𝐶 is the time when the negative effect caused by the environmental

event disappears.

To examine the recovery process, we focus on the recovery time which we define to be the first time

after 𝑇𝐶 at which the population has recovered to its pre-event size. From Equations (1) and (2), the

matrix model can be written as {
𝐧(𝑡 + 1) = 𝐀𝜖0

𝐧(𝑡), if 𝑡 < 𝑇𝐶

𝐧(𝑡 + 1) = 𝐀0𝐧(𝑡), otherwise,
(3)

where 𝐀0 represents the pre-event projection matrix (where 𝜖(𝑡) = 0) and 𝐀𝜖0
represents the projec-

tion matrix for the impacted population (where 𝜖(𝑡) = 𝜖0). When the environment is described by

Equation (2), assumption A1 is equivalent to the following assumption.

A2. Assume 𝜌[𝐀0] > 1 and 𝜌[𝐀𝜖0
] < 1, where 𝜌[⋅] denotes the spectral radius.

Using Equation (3), for 𝑡 > 𝑇𝐶 , 𝐧(𝑡 + 1) can be written as

𝐧(𝑡 + 1) = 𝐀𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐧(0). (4)

Let 𝑁(𝑡) ∶= 𝟏⊺𝑚𝐧(𝑡) denote the total population size at time 𝑡, where 𝟏𝑚 is an 𝑚 × 1 vector of ones.

Then, the recovery time, denoted by 𝑇𝑟𝑒𝑐 , is the first integer 𝑡 + 1 > 𝑇𝐶 that satisfies 𝑁(𝑡 + 1) ≥ 𝑁(0)
or, from Equation (4),

𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐧(0) ≥ 𝑁(0). (5)

We define the 𝑚 × 1 vector 𝐩(𝑡) to be the population distribution of individuals from all stages at time 𝑡

so that 𝐧(𝑡) = 𝑁(𝑡)𝐩(𝑡). For notational simplicity, we use 𝑁𝑡 and 𝐩𝑡 to denote the total population and

population distribution at time 𝑡, respectively. Using this notation, Equation (5) is equivalent to

𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0 ≥ 1, (6)
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where 𝐩0 is the population distribution at time 𝑡 = 0. The assumption that 𝜌[𝐀0] > 1 guarantees that a

solution to Equation (6) exists.

We are interested in examining how the recovery time is affected by changes in properties of the

environment or the population. Two types of perturbation analysis can be used to consider how an out-

come 𝑦 changes if a parameter 𝑥 is slightly changed (Caswell & Gassen, 2015). One type is sensitivity

analysis, which describes how additive changes in 𝑥 affect 𝑦 when other parameters are held constant

and is given by
𝑑𝑦

𝑑𝑥
. The other type is elasticity analysis, which describes how proportional changes

in 𝑥 affect 𝑦 while keeping other parameters unchanged and is given by
𝑑𝑦

𝑑𝑥

𝑥

𝑦
. However, both of these

analyses require taking the derivative of the discrete variable 𝑡. To address this issue, we define an

auxiliary function 𝑦 of a continuous variable 𝑡 by

𝑦(𝑡) ∶= 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0, 𝑡 ∈ ℝ+. (7)

The function 𝑦 is a real-valued function of 𝑡 ∈ ℝ+ whenever 𝐀0 has no nonpositive real eigenvalues. In

addition, this function is equal to the left-hand side of (6) for all 𝑡 ∈ ℕ. Therefore, in order to understand

the sensitivity of the recovery time 𝑇𝑟𝑒𝑐 to various parameters, we can study the auxiliary recovery

equation 1 = 𝑦(𝑡) instead, that is

1 = 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0. (8)

Proof of the existence of a real solution to Equation (8) whenever𝐀0 has no nonpositive real eigenvalues

is provided in the Appendix. The recovery time 𝑇𝑟𝑒𝑐 , as defined by Equation (6), can be obtained by

solving Equation (8) and rounding the solution up to the next integer value. Meanwhile, the sensitivity

of 𝑇𝑟𝑒𝑐 with respect to a perturbation in a variable 𝜃,
𝑑𝑇𝑟𝑒𝑐

𝑑𝜃
, can be obtained by implicitly differentiating

Equation (8), solving for
𝑑𝑡

𝑑𝜃
, and evaluating this quantity at a solution pair (𝜃, 𝑡) of Equation (8). Of

course, in order to interpret these values in the context of the discrete equation (6), these sensitivities

should be rounded up to the next integer value. In this manner, the auxiliary equation (8) can be used

to investigate how perturbations in parameters affect the solution to Equation (5).

The assumption of no nonpositive real eigenvalues commonly arises when trying to convert a system

from discrete to continuous time (see, for instance, Singer & Spilerman, 1976). The process of solving

for the recovery time in Equation (8) (as seen in the Appendix) involves taking the logarithm of 𝐀0.

This is complex if 𝐀0 has any real negative eigenvalues and results in a complex-valued recovery time.

Therefore, to ensure that the output is biologically reasonable, we only consider the case where matrix

𝐀0 has no nonpositive real eigenvalues. In the following section, we analyze the sensitivity of the

recovery time with respect to changes in the initial population, vital rates, and the environment.

3 MODEL ANALYSIS

3.1 Sensitivity of the recovery time to the initial population
In this section, we first investigate the sensitivity of the recovery time to the initial population. In

particular, we examine the sensitivity of 𝑇𝑟𝑒𝑐 with respect to the initial population size 𝑁0 and the

initial population distribution 𝐩0. We show that the recovery time 𝑇𝑟𝑒𝑐 is independent of the initial

population size.

Proposition 3.1. Assume A2. The recovery time 𝑇𝑟𝑒𝑐 is independent of initial population size 𝑁(0).
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Since the recovery time 𝑇𝑟𝑒𝑐 is determined by the first 𝑡 ∈ ℕ that satisfies (6), Proposition 3.1 follows

from the fact that Equation (6) is independent of 𝑁0. We note that Proposition 3.1 is not specific to

the environment as described by Equation (2). When the projection matrices are diagonalizable, the

right-hand side of Equation (6) can be decomposed in terms of the eigenvalues and eigenvectors of 𝐀0
and 𝐀𝜖0

, which reduces computation time. Details on this decomposition are provided in the Appendix.

Next, we study how changes in the initial distribution 𝐩0 affect the recovery time of the population.

To do this, we have to take into account the relationship of the components in 𝐩0. Since 𝐩0 is a probabil-

ity distribution (and thus its components must add to one), if we perturb a single component of 𝐩0, we

must compensate by perturbing other components of 𝐩0 so that 𝐩0 remains a probability distribution.

Therefore, we define the derivative of the recovery time with respect to a single component 𝑝𝑖
0 as

𝑑𝑇𝑟𝑒𝑐

𝑑𝑝𝑖
0

=
𝜕𝑇𝑟𝑒𝑐

𝜕𝑝𝑖
0

+
∑
𝑠≠𝑖

𝜕𝑇𝑟𝑒𝑐

𝜕𝑝𝑠
0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0
, (9)

where
𝑑𝑝𝑠

0
𝑑𝑝𝑖

0
reflects the compensation strategy. As pointed out in Caswell (2013), there are different ways

to define the relation between the components of the distribution vector. In Section 4.1, we consider

two particular strategies to define how the components relate to each other. We give the general formula

for the sensitivity for an arbitrary relation in the following proposition.

Proposition 3.2. Assume A2 and that 𝐀0 has no nonpositive real eigenvalues. The sensitivity of 𝑇𝑟𝑒𝑐

with respect to 𝑝𝑖
0 is given by

𝑑𝑇𝑟𝑒𝑐

𝑑𝑝𝑖
0

= − 1
𝑴

𝟏⊺𝑚𝐀
𝑇𝑟𝑒𝑐

0 𝐀−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0

𝑚∑
𝑠=1

𝜕𝐩0
𝜕𝑝𝑠

0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0
, (10)

where 𝑴 is a scalar given by

𝑴 = 𝟏⊺𝑚
([

𝐀−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
(𝐩0)

]⊺
⊗ 𝐈𝑚

)
vec

[
𝑩𝐀𝑇𝑟𝑒𝑐

0

]
.

Here, the ⊗ operator denotes the Kronecker product and the vec operator stacks the columns of a

matrix to make a column vector.

Proof. We begin by taking the derivative of Equation (8) with respect to 𝑝𝑖
0. For the derivative of the

left-hand side of Equation (8), we have
𝑑1
𝑑𝑝𝑖

0
= 0.

Given two functions 𝑓 ∶ ℝ𝓁 → ℝ𝑝×𝑞 and 𝑔 ∶ ℝ𝓁 → ℝ𝑞×𝑟, the chain rule for matrix derivatives

(Magnus & Neudecker, 1988) states that

𝑑vec [𝑓 (𝑥)𝑔(𝑥)]
𝑑𝑥

= (𝑔⊺(𝑥) ⊗ 𝐼𝑝)
𝑑vec[𝑓 (𝑥)]

𝑑𝑥
+ (𝐼𝑟 ⊗ 𝑓 (𝑥))𝑑vec[𝑔(𝑥)]

𝑑𝑥
. (11)

For the derivative of the right-hand side of Equation (8), applying Equation (11) repeatedly, we have

𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0
𝐩0
)

𝑑𝑝𝑖
0

=𝟏⊺
𝑚

⎡⎢⎢⎢⎣
((

𝐀−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0
𝐩0
)⊺

⊗ 𝐈𝑚
) 𝑑vec

[
𝐀𝑡

0
]

𝑑𝑝𝑖
0

+ 𝐀𝑡
0

𝑑

(
𝐀−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0
𝐩0
)

𝑑𝑝𝑖
0

⎤⎥⎥⎥⎦
= 𝟏⊺

𝑚

[((
𝐀−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0
𝐩0
)⊺

⊗ 𝐈𝑚
) 𝑑vec

[
𝐀𝑡

0
]

𝑑𝑡

𝑑𝑡

𝑑𝑝𝑖
0
+ 𝐀𝑡

0𝐀
−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0

𝑑𝐩0
𝑑𝑝𝑖

0

]

r

w

T

S

F

L

a

3
F

c

i

i

o

a

t

L

t

t

T

p



ACKLEH ET AL. 3 of 22Natural Resource Modeling. 7 of 22

s

o

e

0
.

.

-

e

.

)

s

r

a

𝑐

)

a

e

s

)

= 𝟏⊺
𝑚

[((
𝐀−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0
𝐩0
)⊺

⊗ 𝐈𝑚
) 𝑑vec

[
𝐀𝑡

0
]

𝑑𝑡

𝑚∑
𝑠=1

𝜕𝑡

𝜕𝑝𝑠
0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0
+ 𝐀𝑡

0𝐀
−𝑇𝐶

0 𝐀𝑇𝐶

𝜖0

𝑚∑
𝑠=1

𝜕𝐩0
𝜕𝑝𝑠

0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0

]
.

(12)

Theorem 1.31 in Higham (2008) states that matrices whose eigenvalues do not include nonpositive

real values have a unique principal logarithm. Thus, there exists a unique matrix 𝑩 such that 𝐀0 = 𝑒𝑩 ,

where 𝑩 is the principal logarithm of 𝐀0 whose eigenvalues lie in the strip {𝑧 ∶ −𝜋 < 𝐼𝑚(𝑧) < 𝜋}.

This theorem allows us to write the term
𝑑vec[𝐀𝑡

0]
𝑑𝑡

as

𝑑vec
[
𝐀𝑡
0
]

𝑑𝑡
= vec

[
𝑑(𝑒𝑡𝑩)

𝑑𝑡

]
= vec[𝑩𝑒𝑡𝑩] = vec

[
𝑩𝐀𝑡

0
]
. (13)

Substituting Equation (13) into Equation (12) yields

𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0
)

𝑑𝑝𝑖
0

= 𝟏⊺𝑚
[((

𝐀−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0
)⊺

⊗ 𝐈𝑚
)
vec

[
𝑩𝐀𝑡

0
] 𝑚∑

𝑠=1

𝜕𝑡

𝜕𝑝𝑠
0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0

+𝐀𝑡
0𝐀

−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0

𝑚∑
𝑠=1

𝜕𝐩0
𝜕𝑝𝑠

0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0

]
. (14)

Finally, combining
𝑑1
𝑑𝑝𝑖

0
= 0 and Equation (14), we have

0 = 𝟏⊺𝑚
[(

𝐀−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0
)⊺

⊗ 𝐈𝑚
]
vec

[
𝑩𝐀𝑡

0
] 𝑚∑

𝑠=1

𝜕𝑡

𝜕𝑝𝑠
0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0

+ 𝟏⊺𝑚𝐀𝑡
0𝐀

−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0

𝑚∑
𝑠=1

𝜕𝐩0
𝜕𝑝𝑠

0

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0
.

Letting 𝑴 = 𝟏⊺𝑚[(𝐀
−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0)⊺ ⊗ 𝐈𝑚]vec[𝑩𝐀𝑡

0], we solve this equation for
𝑑𝑡

𝑑𝑝𝑖
𝑜

and evaluate the result

at 𝑡 = 𝑇𝑟𝑒𝑐 to obtain formula (10). ■

3.2 Sensitivity of the recovery time to vital rates
From model equations (1) and (2), we see that the recovery time depends on the initial population

condition, the environmental parameters, and the vital rates. For endangered species with declin-

ing populations, there are various management strategies, such as limiting human hunting or fish-

ing, and predator control efforts that can increase their vital rates (Silvy, 2012). Here, we focus

on how improvements in vital rates as a result of management may affect the recovery time. We

assume that management efforts are only applied while the vital rates of a species are being nega-

tively impacted by a disturbance and are removed after the vital rates recover to predisturbance values.

Let 𝜽̂ ∶= [𝜃1(0, 𝑇𝐶 ), 𝜃2(0, 𝑇𝐶 ),… , 𝜃𝑙(0, 𝑇𝐶 )] denote a vector of the 𝑙 vital rates impacted by the dis-

turbance, where 𝜃𝑖(0, 𝑇𝐶 ) represents a constant vital rate from year zero to year 𝑇𝐶 . Then,
𝑑𝑇𝑟𝑒𝑐

𝑑𝜽̂
gives

the sensitivity of the recovery time to changes in the affected vital rates from year zero to year 𝑇𝐶 .

This sensitivity analysis reveals which life stages are particularly important for the recovery of the

population.
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Proposition 3.3. Assume A2 and that 𝐀0 has no nonpositive real eigenvalues. The sensitivity of 𝑇𝑟𝑒𝑐

with respect to changes in vital rates up to year 𝑇𝐶 is given by

𝑑𝑇𝑟𝑒𝑐

𝑑𝜽̂
= −

𝟏⊺𝑚𝐀
𝑇𝑟𝑒𝑐−𝑇𝐶

0
(
𝐩⊺0 ⊗ 𝐈𝑚

)∑𝑇𝐶

𝑖=1
(
𝐀⊺

𝜖0

)𝑇𝐶−𝑖
⊗ 𝐀𝑖−1

𝜖0

𝑑vec[𝐀𝜖0 ]

𝑑𝜽̂(
𝐀𝑇𝐶

𝜖0
𝐩0
)⊺ (

𝐈𝑚 ⊗ 𝟏⊺𝑚
)
vec

[
𝑩𝑒(𝑇𝑟𝑒𝑐−𝑇𝐶 )𝑩

] . (15)

Proof. We start by taking the derivative of Equation (8) with respect to 𝜽̂. On the left-hand side, the

derivative is zero. On the right-hand side, applying Equation (11), we have

𝑑

[(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0

)(
𝐀𝑇𝐶

𝜖0
𝐩0
)]

𝑑𝜽̂
=
[(

𝐀𝑇𝐶
𝜖0
𝐩0
)⊺

⊗ 𝐈1
] 𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0

)
𝑑𝜽̂

+ 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0

𝑑

(
𝐀𝑇𝐶

𝜖0
𝐩0
)

𝑑𝜽̂
. (16)

For the first term on the right-hand side of Equation (16), we have

𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0

)
𝑑𝜽̂

= (𝐈𝑚 ⊗ 𝟏⊺𝑚)
𝑑vec

[
𝐀𝑡−𝑇𝐶

0

]
𝑑𝜽̂

= (𝐈𝑚 ⊗ 𝟏⊺𝑚)
𝑑vec

[
𝑒(𝑡−𝑇𝐶 )𝑩

]
𝑑𝜽̂

= (𝐈𝑚 ⊗ 𝟏⊺𝑚)
𝑑vec

[
𝑒(𝑡−𝑇𝐶 )𝑩

]
𝑑𝑡

𝑑𝑡

𝑑𝜽̂

= (𝐈𝑚 ⊗ 𝟏⊺𝑚)vec[𝑩𝑒(𝑡−𝑇𝐶 )𝑩] 𝑑𝑡

𝑑𝜽̂
.

For the second term on the right-hand side of Equation (16), we apply Equation (11), the chain rule,

and the property

𝑑𝐀𝑛

𝑑𝐀
=

𝑛∑
𝑖=1

(𝐀⊺)𝑛−𝑖 ⊗ 𝐀𝑖−1,

for a square matrix 𝐀 from Magnus and Neudecker (1988), where 𝑛 is an integer. We obtain

𝑑

(
𝐀𝑇𝐶

𝜖0
𝐩0
)

𝑑𝜽̂
= (𝐩⊺0 ⊗ 𝐈𝑚)

𝑑𝐀𝑇𝐶
𝜖0

𝑑𝐀𝜖0

𝑑vec[𝐀𝜖0
]

𝑑𝜽̂

= (𝐩⊺0 ⊗ 𝐈𝑚)
𝑇𝐶∑
𝑖=1

(𝐀⊺
𝜖0
)𝑇𝐶−𝑖 ⊗ 𝐀𝑖−1

𝜖0

𝑑vec[𝐀𝜖0
]

𝑑𝜽̂
.

S
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3
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𝑐

)

e

)

,

Substituting these two terms back into Equation (16) yields

0 =
(
𝐀𝑇𝐶

𝜖0
𝐩0
)⊺

(𝐈𝑚 ⊗ 𝟏⊺𝑚)vec[𝑩𝑒(𝑡−𝑇𝐶 )𝑩] 𝑑𝑡

𝑑𝜽̂

+ 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0 (𝐩⊺0 ⊗ 𝐈𝑚)
𝑇𝐶∑
𝑖=1

(𝐀⊺
𝜖0
)𝑇𝐶−𝑖 ⊗ 𝐀𝑖−1

𝜖0

𝑑vec[𝐀𝜖0
]

𝑑𝜽̂
.

Solving for
𝑑𝑡

𝑑𝜽̂
and evaluating the result at 𝑡 = 𝑇𝑟𝑒𝑐 , we obtain Equation (15). ■

3.3 Sensitivity of recovery time to environmental parameters
Numerous studies of environmental disturbances have shown that the vital rates of wildlife populations

in the affected area experience declines following the event (Lane et al., 2015; Mensah, Palmer, &

Muller, 2014; Relyea, 2009). However, for some species such as sperm whales and beaked whales

in Gulf of Mexico, the habitat and the behavior of these large marine mammals make it difficult to

quantify the changes in the vital rates caused by such events or the duration of impact. In other words,

it is complicated, sometimes impossible, to obtain accurate estimates of 𝜖0 or 𝑇𝐶 . Thus, it is useful to

know how the recovery time changes if the parameters describing the impact of a disturbance change.

In addition, even if 𝜖0 and 𝑇𝐶 can be estimated accurately, the study of the sensitivity of the recovery

time with respect to the environmental parameters reveals to us how much the recovery time can be

reduced if we are able to reduce the impact of the event. Thus, we study how the change in the impact

magnitude 𝜖0 and duration of impact 𝑇𝐶 affect the recovery time 𝑇𝑟𝑒𝑐 .

Proposition 3.4. Assume A2 and that 𝐀0 has no nonpositive real eigenvalues. The sensitivity of 𝑇𝑟𝑒𝑐

to changes in 𝜖0 is given by

𝑑𝑇𝑟𝑒𝑐

𝑑𝜖0
= −

𝟏⊺𝑚𝐀
𝑇𝑟𝑒𝑐−𝑇𝐶

0
(
𝐩⊺0 ⊗ 𝐈𝑚

) 𝑑

(
𝐀𝑇𝐶

𝜖0

)
𝑑𝐀𝜖0

𝑑vec
[
𝐀𝜖0

]
𝑑𝜖0(

𝐀𝑇𝐶
𝜖0
𝐩0
)⊺ (

𝐈𝑚 ⊗ 𝟏⊺𝑚𝐀
−𝑇𝐶

0

) 𝑑vec
[
𝐀𝑇𝑟𝑒𝑐
0

]
𝑑𝑇𝑟𝑒𝑐

. (17)

Proof. To obtain the sensitivity of the recovery time to 𝜖0, we take the derivative of Equation (8) with

respect to 𝜖0. The derivative of the left-hand side of Equation (8) is zero, while the derivative of the

right-hand side, obtained by applying Equation (11) repeatedly, is

𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0 𝐀𝑇𝐶
𝜖0
𝐩0
)

𝑑𝜖0
=
[(

𝐀𝑇𝐶
𝜖0
𝐩0
)⊺

⊗ 𝐈1
] 𝑑

(
𝟏⊺𝑚𝐀

𝑡−𝑇𝐶

0

)
𝑑𝜖0

+ 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0

𝑑

(
𝐀𝑇𝐶

𝜖0
𝐩0
)

𝑑𝜖0

=
(
𝐀𝑇𝐶

𝜖0
𝐩0
)⊺ (

𝐈𝑚 ⊗ 𝟏⊺𝑚𝐀
−𝑇𝐶

0

) 𝑑vec
[
𝐀𝑡
0
]

𝑑𝑡

𝑑𝑡

𝑑𝜖0

+ 𝟏⊺𝑚𝐀
𝑡−𝑇𝐶

0
(
𝐩⊺0 ⊗ 𝐈𝑚

) 𝑑𝐀𝑇𝐶
𝜖0

𝑑𝐀𝜖0

𝑑vec[𝐀𝜖0
]

𝑑𝜖0
,

where
𝑑𝐀𝑇𝐶

𝜖0
𝑑[𝐀(𝜖0)]

=
∑𝑇𝐶

𝑗=1(𝐀𝜖0
⊺)𝑇𝐶−𝑗 ⊗ 𝐀𝑗−1

𝜖0
. Solving for

𝑑𝑡

𝑑𝜖0
and evaluating the result at 𝑡 = 𝑇𝑟𝑒𝑐 , we

obtain Equation (17). ■
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We also study the sensitivity of 𝑇𝑟𝑒𝑐 with respect to changes in 𝑇𝐶 . Since 𝑇𝐶 is a discrete parameter,

we use the following difference operator:

𝑆𝑅𝑇 (𝑇𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙) = 𝑇𝑟𝑒𝑐(𝑇𝐶 + 1) − 𝑇𝑟𝑒𝑐(𝑇𝐶 ), (18)

to estimate this sensitivity. Equation (18) gives the average rate of change of 𝑇𝑟𝑒𝑐 given a one unit

change in 𝑇𝐶 . In Section 4.1, we use formulas (17) and (18) to examine a sperm whale population

subject to an environmental disturbance.

3.4 The mean and variance of a population with demographic stochasticity
So far, we have only considered the recovery time for a deterministic population model. However,

demographic stochasticity, which takes into consideration the variation among individuals in the ran-

dom outcomes of the vital rates, can also affect the recovery times. When demographic stochasticity

is incorporated into a population model, each individual experiences an independent realization of the

vital rates, making the population size at any time 𝑡 a random variable. As a consequence, the recovery

time is also a random variable that may take different values for each simulation run. To obtain the

mean and variance of the population at certain times without performing thousands of simulations,

the analysis of the stochastic process, which is based on a multitype branching process, is needed. See

Caswell (2001, Chapter 15) for a detailed discussion of the relation between multitype branching pro-

cesses and matrix population models. We impose the same assumptions on the stochastic demographic

events as in Ackleh et al. (2017). We begin by decomposing the projection matrix 𝐀(𝑡) into a transi-

tion matrix 𝑼 (𝑡) = (𝑢𝑖𝑗(𝑡)) and a fertility matrix 𝑭 = (𝑓𝑖𝑗(𝑡)) such that 𝐀(𝑡) = 𝑼 (𝑡) + 𝑭 (𝑡). The fertility

matrix 𝑭 (𝑡) is zero elsewhere besides the nonzero birth entries from 𝐀(𝑡). The matrix 𝑼 (𝑡) does not

include death as a state, so we add an additional row to 𝑼 (𝑡) to create 𝑼̃ (𝑡) whose columns add up to

one.

Let𝐗(𝑗)(𝑡) ∶= [𝑋(𝑗)
1 (𝑡),… , 𝑋

(𝑗)
𝑚 (𝑡)]⊺ be the vector random variable that gives the number of offspring

of each stage from a parent in stage 𝑗 at time 𝑡, where 𝑚 represents the number of stages in the population

model and 𝑋
(𝑗)
𝑖
(𝑡) denotes the random number of offspring of stage 𝑖 produced by a parent of stage 𝑗

at time 𝑡. Here, we use offspring to refer to both individuals produced through transition and through

birth. Then, we can write

𝑋
𝑗

𝑖
(𝑡) = 𝑈

(𝑗)
𝑖
(𝑡) + 𝐹

(𝑗)
𝑖

(𝑡),

where the random variables 𝑈
(𝑗)
𝑖
(𝑡) and 𝐹

(𝑗)
𝑖

(𝑡) give the number of offspring of stage 𝑖 produced by a

parent of stage 𝑗 via transition and birth at time 𝑡, respectively. We assume that the random variable

𝑈
(𝑗)
𝑖
(𝑡) follows a multinomial distribution determined by the 𝑗th column of 𝑼̃ and 𝐹

𝑗

𝑖
(𝑡) follows a

binomial distribution determined by the first row and 𝑗th column of 𝑭 . Given the independence of

birth and transition events, the expected number of offspring of stage 𝑖 produced by parents of stage 𝑗

can be obtained by

𝐸(𝑋(𝑗)
𝑖
(𝑡)) = 𝐸(𝑈 (𝑗)

𝑖
(𝑡)) + 𝐸(𝐹 (𝑗)

𝑖
(𝑡)) = 𝑢𝑖𝑗(𝑡) + 𝑓𝑖𝑗(𝑡) = 𝑎𝑖𝑗(𝑡), (19)

where 𝑎𝑖𝑗(𝑡) is the (𝑖, 𝑗)th component of 𝐀(𝑡). We further assume that the births of different offspring

stages are independent. Then, we have

Var(𝑋(𝑗)
𝑖
(𝑡)) = Var(𝑈 (𝑗)

𝑖
(𝑡)) + Var(𝐹 (𝑗)

𝑖
(𝑡)) = 𝑢𝑖𝑗(𝑡)(1 − 𝑢𝑖𝑗(𝑡)) + 𝑓𝑖𝑗(𝑡)(1 − 𝑓𝑖𝑗(𝑡))

Cov(𝑋(𝑗)
𝑖
(𝑡), 𝑋(𝑗)

𝑘
(𝑡)) = Cov(𝑈 (𝑗)

𝑖
(𝑡), 𝑈 (𝑗)

𝑘
(𝑡)) = −𝑢𝑖𝑗(𝑡)𝑢𝑘𝑗(𝑡), 𝑖 ≠ 𝑘, (20)

w

d

w

𝑿

w

c

U

w

w
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o
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,

)

t

n

,

-

y
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e

,

e

-

c

-

y

t

o

g

n

𝑗

h

a

e

a

f

𝑗

)

g

)

where Var(𝑋(𝑗)
𝑖
(𝑡)) denotes the variance of the random variable 𝑋

(𝑗)
𝑘
(𝑡) and Cov(𝑋(𝑗)

𝑖
(𝑡), 𝑋(𝑗)

𝑘
(𝑡))

denotes the covariance between random variables 𝑋
(𝑗)
𝑖
(𝑡) and 𝑋

(𝑗)
𝑘
(𝑡). We know that

𝐧(𝑡 + 1) =
𝑚∑

𝑗=1

𝑛𝑗 (𝑡)∑
𝑖=1

𝑿
(𝑗)
𝑘
(𝑡),

where 𝑿
𝑗

𝑘
(𝑡) represents the vector including offspring of all stages from the 𝑘th parent of stage 𝑗. Thus,

𝑿
𝑗

𝑘
(𝑡) are identical random variables. Applying the rule of total expectation and Equation (19), we can

write the expected population at time 𝑡 + 1, 𝐸(𝐧(𝑡 + 1)), as

𝐸(𝐧(𝑡 + 1)) = 𝐸

⎛⎜⎜⎝
𝑚∑

𝑗=1

𝑛𝑗 (𝑡)∑
𝑘=1

𝑿
(𝑗)
𝑘
(𝑡)
⎞⎟⎟⎠ =

𝑚∑
𝑗=1

𝐸

⎛⎜⎜⎝
𝑛𝑗 (𝑡)∑
𝑘=1

𝑿
(𝑗)
𝑘
(𝑡)
⎞⎟⎟⎠

=
𝑚∑

𝑗=1
𝐸

⎛⎜⎜⎝𝐸
⎛⎜⎜⎝
𝑛𝑗 (𝑡)∑
𝑘=1

𝑿
(𝑗)
𝑘
(𝑡)|𝑛𝑗(𝑡)

⎞⎟⎟⎠
⎞⎟⎟⎠ =

𝑚∑
𝑗=1

𝐸
(
𝑛𝑗(𝑡)𝐸

(
𝐗(𝑗)(𝑡)

))

=
𝑚∑

𝑗=1
𝐸(𝑛𝑗(𝑡))𝐸(𝐗(𝑗)(𝑡)) = 𝐀(𝑡)𝐸(𝐧(𝑡)). (21)

We proceed to calculate the variance of the population 𝐧(𝑡). We use 𝑪(𝐧(𝑡)) = (𝑐𝑖𝑗(𝑡)) to denote the

covariance matrix at time 𝑡 for 𝐧(𝑡), where 𝑐𝑖𝑗(𝑡) represents the covariance between 𝑛𝑖(𝑡) and 𝑛𝑗(𝑡).
Using the rule of total expectation and Equation (21), we have

𝑪(𝐧(𝑡 + 1)) = 𝐸 (Cov(𝐧(𝑡 + 1)|𝐧(𝑡))) + Cov (𝐸(𝐧(𝑡 + 1)|𝐧(𝑡)))
= 𝐸

⎛⎜⎜⎝Cov

⎡⎢⎢⎣
𝑚∑

𝑗=1

𝑛𝑗 (𝑡)∑
𝑖=1

𝑋
(𝑗)
𝑖
(𝑡)|𝑛𝑗(𝑡)

⎤⎥⎥⎦
⎞⎟⎟⎠ + Cov (𝐀(𝑡)𝐧(𝑡))

=
𝑚∑

𝑗=1
𝐸
(
𝑛𝑗(𝑡)Cov(𝐗(𝑗)(𝑡))

)
+ 𝐀(𝑡)𝐶(𝐧(𝑡))𝐀⊺(𝑡)

=
𝑚∑

𝑗=1
𝐸(𝑛𝑗(𝑡))Cov(𝐗(𝑗)(𝑡)) + 𝐀(𝑡)𝑪(𝐧(𝑡))𝐀⊺(𝑡), (22)

where the covariance matrix of 𝐗(𝑗) can be obtained using Equation (20). Therefore, we have

Var(𝑛𝑖(𝑡)) = 𝑐𝑖𝑖(𝑡), (23)

where 𝑐𝑖𝑖(𝑡) is obtained from Equation (22).

4 APPLICATION TO A SPERM WHALE MODEL

In this section, we apply the results from Section 3 to study the sperm whale population in the Gulf

of Mexico following a disturbance such as the DWH oil spill. Sperm whales are known to have been
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T A B L E 1 Vital rates obtained from Chiquet et al. (2013)

Survival Rates Values Transition Rates Values
𝜎0
1 0.9070 𝛾01 0.4732

𝜎0
2 0.9424 𝛾02 0.1151

𝜎0
3 0.9777 𝛾03 0.2586

𝜎0
4 0.9777 𝛾04 0.4920

𝜎0
5 0.9777 𝛾05 0.4920

present in areas of the Gulf impacted by the oil spill (Ackleh et al., 2012) and studies have shown that

the DWH oil spill has affected the vital rates of large marine mammals in Northern Gulf of Mexico

both through the toxins released during the oil spill and the chemical dispersants thrown in (Geraci,

1990; Lane et al., 2015; Wise, Wise, Wise, Thompson, & Wise, 2014a; Wise et al., 2014b). In addition,

it has been shown that the chemicals released from the oil spill continue to affect the marine mammals

after contact (Geraci, 1990; Wise et al., 2014a, b). We use the results from Sections 3.1–3.3 to study

the sensitivity of the recovery time of the sperm whale population following a disturbance. In addi-

tion, we use results from Section 3.4 to investigate how the recovery time is affected by demographic

stochasticity and obtain an interval estimate of the recovery time under different scenarios.

4.1 Sensitivity analysis of recovery time
Following Chiquet et al. (2013), we divide the sperm whale population into five stages: calves, juve-

niles, mature females, mothers, and postbreeding females. For notational simplicity, we use 𝐀(𝑡) ∶=
𝐀[𝜽(𝜖(𝑡))] to denote the projection matrix at time 𝑡

𝐀(𝑡) =

⎛⎜⎜⎜⎜⎜⎝

𝑃1(𝑡) 0 𝑏 0 0
𝐺1(𝑡) 𝑃2(𝑡) 0 0 0
0 𝐺2(𝑡) 𝑃3(𝑡) 0 𝐺5(𝑡)
0 0 𝐺3(𝑡) 𝑃4(𝑡) 0
0 0 0 𝐺4(𝑡) 𝑃5(𝑡)

⎞⎟⎟⎟⎟⎟⎠
, (24)

where 𝑃𝑘(𝑡) = 𝜎𝑘(𝑡)(1 − 𝛾𝑘(𝑡)) represents the probability of surviving and staying in stage 𝑘 at time

𝑡, 𝐺𝑘 = 𝜎𝑘(𝑡)𝛾𝑘(𝑡) represents the probability of surviving and moving to stage 𝑘 + 1 for 𝑘 = 1,… , 4,

and 𝐺5 = 𝜎5(𝑡)𝛾5(𝑡) represents the probability that a postbreeding female survives and returns to the

mature female stage. Here, 𝜎𝑘(𝑡) represents the survival probability of whales in stage 𝑘 at time 𝑡 and

𝛾𝑘(𝑡) represents the probability of whales in stage 𝑘 moving out of stage 𝑘 at time 𝑡. The mature female

whales have fecundity 𝑏 = 0.125. The values of the survival rates and transition rates at their pre-event

levels are listed in Table 1.

Here, we consider the case where a spill results in a reduction in survival rates so that 𝜽(𝜖(𝑡)) =
[𝜎1(𝜖(𝑡)),… , 𝜎5(𝜖(𝑡))], where 𝜖(𝑡) is defined in Equation (2). Given that juvenile stages are known to

be more sensitive to toxicants in many species (Birge, Black, & Westerman, 1979), we allow for the

possibility that a disturbance has a greater impact on the survival of the juvenile stages. We define the

reduction in the survival of stage 𝑖 according to

𝜎𝑖(𝑡) ∶= 𝜎0
𝑖
(1 − 𝑘𝑖𝜖(𝑡)). (25)

F
𝑁

e

S

h

f

t

t

t

t

p

h

F

H

a

F

t

g

o

l

d

l

t

t

P

t

d

(

s



ACKLEH ET AL. 3 of 22Natural Resource Modeling. 13 of 22

t

o

,

,

s

y

-

c

-

=

)

e

,

e

d

e

t

=
o

e

e

)

F I G U R E 1 The total population size over time for different initial distributions with initial female population

𝑁0 = 381, 𝑇𝐶 = 10, and 𝜖0 = 0.05. 𝐩𝑖
0 = 𝒆𝑖 for 𝑖 = 1,… , 5, where 𝒆𝑖 is the vector with 1 on the 𝑖th entry and 0 everywhere

else and 𝐩60 = [0.0850 0.2077 0.3617 0.1783 0.1672]⊺ is the stable stage distribution

Since Ackleh et al. (2017) observed that the recovery probability for a sperm whale population is not

heavily impacted by these weights, for simulation purposes, we consider only one scenario with 𝑘𝑖 = 2
for 𝑖 = 1, 2 and 𝑘𝑖 = 1 for 𝑖 = 3, 4, 5.

Using the parameters above, we first calculate the recovery time for different population sizes when

the environment is given by 𝑇𝐶 = 10 and 𝜖0 = 0.05. As expected from Proposition 3.1, the recovery

times for all the simulations are the same (not shown). Next, we consider the sensitivity of the recovery

time of the sperm whale population to perturbations in the initial population distribution. Assume that

the female to male ratio of sperm whales in Gulf of Mexico is one to one. Choosing an initial female

population size of 𝑁0 = 381 (Waring, Josephson, Maze-Foley, & Rosel, 2012), we start by considering

how the total population size at time 𝑡, 𝑁(𝑡), changes with respect to different initial distributions.

Figure 1 shows the total population size for 𝑡 = 1,… , 100 with six different initial distributions 𝐩𝑖
0.

Here, we define 𝐩𝑖
0 = 𝒆𝑖 for 𝑖 = 1,… , 5, where 𝒆𝑖 is a vector with 1 on the 𝑖th entry and zeros elsewhere,

and we define 𝐩60 to be the stable stage distribution 𝐩60 = [0.0850 0.2077 0.3617 0.1783 0.1672]⊺.

From Figure 1, we see that the total population with the initial distribution 𝐩30 is always larger than

the others. In particular, there is 170% more population with 𝐩30 than 𝐩10 at 𝑡 = 100. This implies that,

given a fixed pre-event population level, the population can recover in a shorter time if a larger portion

of the population consists of mature female adults. We note that, since the sperm whale model is

linear, it is possible to increase or decrease the number of stages in the model while preserving the

dominant eigenvalue and stable stage distribution (Salguero-Gomez & Plotkin, 2010). Therefore, the

long-term dynamics of the population are not impacted by the dimension of the model. However, since

the recovery time depends on the transient dynamics of the model, as can be seen in Figure 1, changing

the dimensions of the model may have an impact on the recovery time.

To better understand how the initial population distribution affects the recovery time, we apply

Proposition 3.2 to the sperm whale population subject to reductions defined by (25). We consider

the following two strategies to specify the relation between the components of 𝐩0. In Strategy 1, we

distribute the change in 𝐩𝑖
0 uniformly among the other components, in which case

𝜕𝑝𝑠
0

𝜕𝑝𝑖
0
= −1

4 for 𝑠 ≠ 𝑖

(Caswell, 2001). In Strategy 2, we create an 𝑚 × 𝑚 matrix 𝑺 where the (𝑖, 𝑗) component represents the

sensitivity of 𝑇𝑟𝑒𝑐 with respect to 𝐩𝑖
0 given that the change in 𝐩𝑖

0 is compensated by the change in 𝐩𝑗

0. In
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F I G U R E 2 Left: The elasticity of the recovery time to the initial distribution using Strategy 1. Right: The elasticity

of recovery time to the initial distribution using Strategy 2. The initial distribution is given by the stable distribution

[0.0850 0.2077 0.3617 0.1783 0.1672]⊺, and the environment is described by 𝑇𝐶 = 10 and 𝜖0 = 0.05

the second strategy,
𝜕𝑝𝑖

0
𝜕𝑝

𝑗

0
= −1 and

𝜕𝑝𝑖
0

𝜕𝑝𝑠
0
= 0, 𝑠 ≠ 𝑗, for the sensitivity calculation in the (𝑖, 𝑗) entry. From

the left side of Figure 2, we see that, using Strategy 1, increasing the proportion in either of the two

juvenile stages leads to a longer recovery time, while increasing the proportion in any of the three adult

stages shortens the recovery time. This agrees with what we observe in Figure 1 in the sense that when

there are more individuals in the adults stages, it takes less time to recover to a fixed population level.

Overall, we see that the mature female adult population reduces the recovery time the most. The right

side of Figure 2 gives the elasticities of the recovery time when we apply Strategy 2 to the stable stage

distribution. The entry in the 𝑖th row and 𝑗th column describes how the recovery time changes when

an increase in stage 𝑖 is compensated by a reduction in stage 𝑗. We conclude that increasing the stage 3

proportion and decreasing the stage 1 proportion has the greatest effect on the recovery, reducing the

recovery proportion by 36%.

To understand how the vital rates affect the recovery time under different magnitudes of reduction

and impact time, we use Proposition 3.3 to compute the elasticity of the recovery time to the survival

rates. Figure 3 gives the elasticities of the recovery time with respect to the survival rates for two

different values of 𝑇𝐶 . We observe that these elasticities are negative. This is biologically reasonable

since higher survival rates mean larger growth rates, which result in the population reaching the pre-

event level faster. In addition, our sensitivity calculations show that as 𝜖0 increases, an increase in

any of the three mature stages yields a larger reduction in recovery time for larger 𝜖0. Meanwhile, an

increase in either of the two immature stages leads to a smaller reduction in recovery time for larger

𝜖0. For the succinctness of the presentation, these figures are not shown. However, from Figure 3, we

see that, as 𝜖0 increases, an increase in the survival rate of any of the five stages leads to a smaller

proportional reduction in recovery time. This is because even though the absolute change in reduction

time is bigger, the proportion of change is actually smaller.

4.2 Examining the effect of demographic stochasticity on the recovery process
Utilizing the mean and variance formulas given in Equations (21) and (22), we calculate lower and

upper estimates for the recovery time, 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

and 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 , from the 95% confidence interval of the total

population size. In Dennis and Patil (1984), it is shown that, for many stochastic population models,

the gamma distribution arises as a distribution of population size when the equilibrium population
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F I G U R E 3 Elasticities of the recovery time to changes in survival rates for 𝜖0 ∈ [0.01, 0.25]. Shown are a scenario

in which the impact of the disturbance lasts for (Left) 10 years and a more severe disturbance in which the impact lasts

for (Right) 20 years. The stages are denoted by (solid) calves, (dash) immature females, (circle) mature females, (dot)

mothers, and (triangle) postbreeding females (whose elasticity overlaps with the mothers)

structure is reached. By assuming that each stage of the population follows a gamma distribution with

parameters obtained using the mean and variance from Equations (21) and (22), it is possible to analyze

the sensitivity of recovery time using the stochastic model. We perform the following procedure to

obtain 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

and 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 for different initial population sizes.

Simulation Procedure:

(i) Initialize parameters in model (3) with 𝑇𝐶 = 10, 𝜖0 = 0.05, initial female population size 𝑁0 =
50, and initial population distribution [0.0850, 0.2077, 0.3617, 0.1783, 0.1672]⊺.

(ii) Given the parameters in (i), calculate the recovery time by solving Equation (8).

(iii) Use Equations (21) and (23) to calculate the mean and variance of each stage at time 𝑡 = 𝑇𝑟𝑒𝑐 .

Assuming the population follows a gamma distribution, obtain two vectors, 𝐧𝑙𝑜𝑤
0 and 𝐧ℎ𝑖𝑔ℎ

0 , whose

entries contain the 95% confidence intervals for each stage at time 𝑡 = 𝑇𝑟𝑒𝑐 .

(iv) Using the map

𝐧(𝑡 + 1) = 𝐀0𝐧(𝑡),

find the first time the total population size reaches 𝑁0 using initial conditions 𝐧𝑙𝑜𝑤
0 and 𝐧ℎ𝑖𝑔ℎ

0 . Add

𝑇𝑟𝑒𝑐 to the solution with initial condition 𝐧𝑙𝑜𝑤
0 to obtain 𝑇

ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 . Add 𝑇𝑟𝑒𝑐 to the solution with initial

condition 𝐧ℎ𝑖𝑔ℎ

0 to obtain 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

.

(v) Repeat step (i) to step (iv) for initial population size 𝑁0 = 𝑎 ∶ 𝑐 ∶ 𝑏.

From Figure 4, we see that, given a fixed initial population distribution, the recovery time calculated

from the 95% confidence interval of the population size becomes less sensitive to the initial population

size as the initial population size increases.

We use the Simulation Procedure to obtain the recovery time calculated from the 95% confidence

interval of the population size for different reduction proportions 𝜖0 by changing step (v) to “Repeat

step (i) to step (iv) for 𝜖0 = 0.01 ∶ 0.02 ∶ 0.30,” and using initial female population 𝑁0 = 381. As

we can see from the left side of Figure 5, the width of the interval [𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 ] grows bigger as 𝜖0
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F I G U R E 4 The mean (solid line) and upper (dash line) and lower (dash-dot line) estimates of the recovery time

against the initial population size for 𝑁0 = 50 ∶ 50 ∶ 800

F I G U R E 5 Left: The mean (solid line) and upper (dash line) and lower (dash–dot line) estimates of the recovery

time against the reduction 𝜖0 for 𝜖0 = 0.01 ∶ 0.02 ∶ 0.2. Right: The elasticity of recovery time to changes in 𝜖0

increases. This agrees with our expectation since, as the mean recovery time increases, the variability

during the recovery period grows. Note that the mean recovery time, 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, and 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 all increase almost

linearly with respect to 𝜖0 for 𝜖0 < 0.2. The right side of Figure 5 gives the elasticity of the recovery

time with respect to 𝜖0. From the right side of Figure 5, we see that the elasticity of the recovery time

increases when 𝜖0 increases. This tells us that the recovery time grows superlinearly when 𝜖0 increases.

We also investigate how 𝑇𝐶 affects the recovery time and the interval [𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 ] by changing

step (v) to “Repeat step (i) to step (iv) for 𝑇𝐶 = 2 ∶ 2 ∶ 40,” and using initial female population 𝑁0 =
381. From the left side of Figure 6, we observe that as 𝑇𝐶 increases, the recovery time increases and

both 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

and 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 become larger. The right side of Figure 6 gives the sensitivity of the recovery time

with respect to changes in 𝑇𝐶 calculated using Equation (18). We see that the recovery time increases

linearly with a factor of 6 when 𝑇𝐶 increases. In other words, it takes six more years to recover to

the pre-event population level if the survival rates are reduced for an additional year. Compared to the

effect of changes in the impact magnitude 𝜖0 on the recovery time, the effect of changes in 𝑇𝐶 on the

recovery time is very small.

We note that, if the environmental parameters are such that there is a high probability a stochastic

population will go extinct, then simulation procedure may not be appropriate for examining population
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F I G U R E 6 Left: The mean (solid line) and upper (dash line) and lower (dash–dot line) estimates of the recovery

time against the length of effect 𝑇𝐶 for 𝑇𝐶 = 2 ∶ 2 ∶ 40. Right: The discrete sensitivity of 𝑇𝑟𝑒𝑐 with respect to 𝑇𝐶

recovery. The reason for this is that the implicit formula (8) assumes that populations always recover.

In such a scenario, it may be more appropriate to use stochastic simulations to calculate the recovery

time where, for populations that never recover, the recovery time is set at an arbitrarily large value.

This would result in a mean recovery time and interval [𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 ] that grow much faster than those

calculated using Equation (8). For comparison purposes, we also calculated the 95% confidence inter-

val for the recovery time using a simulation procedure similar to the one described in Ackleh et al.

(2017). For the range of parameter values considered in Figures 4–6, 𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

and 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 closely match

this confidence interval, with values within 1% of each other (not shown).

5 DISCUSSION AND CONCLUSION

In this paper, we present a stage-structured nonautonomous matrix population model and use it to

study the recovery process of a vulnerable population going through some environmental disturbance,

such as overexploitation, an oil spill, or chemical pollution. We assume that the disturbance causes a

reduction in vital rates that results in a declining population size. After the effect of the disturbance

has dissipated, we assume that the vital rates return to predisturbance values. Using a step function

to describe this change in vital rates, we establish an implicit equation for the recovery time given in

Equation (5) and examine the sensitivities of the recovery time using the auxiliary equation (8). Using

methods from matrix calculus, we derive formulas for the sensitivity of the recovery time with respect

to changes in the vital rates, initial population condition, and environmental factors. In addition, uti-

lizing Equations (21) and (23), we estimate upper and lower bounds of the mean recovery time for

a population experiencing demographic stochasticity. Our analysis relies on the fact that the projec-

tion matrix 𝐀0 has no nonpositive real eigenvalues and it remains an open question whether similar

calculations will hold when this assumption is removed.

As an example, we demonstrate how the sensitivity formulas can be used to study the sperm whale

population in Gulf of Mexico following a disturbance such as the 2010 DWH oil spill. As shown in

Figure 4, a small population is associated with a large variance in the mean recovery time. The reason

for this is that demographic stochasticity has a greater influence on small population, increasing the

possibility of significant differences for different realizations. Since the sperm whale population in the

northern Gulf of Mexico is relatively small, which means that demographic stochasticity is likely to

influence the recovery time, we calculate the recovery time from the 95% confidence interval of the
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total population size for a range of environmental conditions, defining an interval [𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 ]. Fig-

ures 5 and 6 show that there is a large variation in the recovery time and that the interval [𝑇 𝑙𝑜𝑤
𝑟𝑒𝑐

, 𝑇
ℎ𝑖𝑔ℎ
𝑟𝑒𝑐 ]

becomes wider for more severe reductions in vital rates. In this application, the limited information

regarding the vital rates are obtained from Chiquet et al. (2013). The stock assessment of the sperm

whales in Northern GoM from the literature does not include information about the structure of their

population. Even less is known about the quantitative impact of the oil spill on the sperm whale pop-

ulation. Our calculation of the elasticity of recovery time to the vital rates shows that, over a wide

range of values, uncertain or erroneous estimates of just a few rates would have a serious impact on the

recovery time. We find that the mature stages, especially the reproducing female stage, contribute the

most to shortening the recovery time. Comparisons of Figures 2 and 3 reveal that the initial population

condition does not affect the recovery time nearly as much as the vital rates.

The recovery time analysis presented in this paper assumes that the disturbance causes a constant

reduction in the vital rates for 𝑇𝐶 years, after which the effect disappears. Even though this is an

oversimplification, by adjusting 𝑇𝐶 , the calculations presented in this paper can provide lower estimates

or upper estimates for a more realistic scenario. Thus, the recovery time can be used by management

organizations as an estimation for conservation efforts. For example, after years of overexploitation of

marine fishes, limited fishing can be enforced until the upper estimate of the recovery time to allow

the stock to recover. In addition, since the lengths of marine fishes provide good estimates of their

ages (Goodyear, 1995), the sensitivity analysis of the recovery time can provide suggestions for the

restrictions on sizes of marine fishes for commercial fishing.

In other cases where a disturbance is caused by an accident such as an oil spill, the assumption

that additional accidents do not occur before the population is recovered may not hold. However, the

recovery time defined in this paper may still be used as the best scenario estimation since any further

disturbance may lead to reduced vital rates based on the existing level, which could slow down or even

reverse the recovery process. Furthermore, from results in Section 4, we expect the sensitivity analysis

to reveal the same significant stages even if more accidents occur. If more disturbances occur before

the population is able to recover, we may expect a higher extinction probability. In such a case, the

recovery time calculated from Equation (8) is no longer a reliable approximation to the recovery time

obtained from the stochastic simulations. It is in our interest to develop creative methods and techniques

in future studies to address this problem.
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APPENDIX A
Lemma A.1. Assume A1 and 𝐀0 has no nonpositive real eigenvalues. Then, there exists a real positive
solution 𝑡 ∈ ℝ+ to Equation (8).

Proof. Consider the auxiliary function defined by Equation (7). An arbitrary matrix power is defined

via the Cauchy integral (Higham, 2008)

𝐀𝑡
0 =

1
2𝜋𝑖 ∫Γ 𝑧𝑡(𝑧𝐈𝑚 − 𝐀0)−1𝑑𝑧,

w
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where Γ is a closed contour that encloses the spectrum of 𝐀0. The principal branch is chosen for

function 𝑧𝑡 around each eigenvalue. This also yields that 𝐀𝑡
0 = 𝑒𝑡𝑩 , where 𝑩 is the principal logarithm

of 𝐀0. Since 𝐀0 has no nonpositive real eigenvalues, by Higham (2008, theorem 1.31), 𝐀𝑡
0 is a real

matrix for 𝑡 ∈ ℝ+. It follows that 𝑦(𝑡) ∈ ℝ. Next, we show that 𝑓 (𝑡) ∶= 𝐀𝑡
0 ∈ 𝐶([0,∞),𝑀𝑚). For 𝑡2 >

𝑡1 > 0, we have

𝑓 (𝑡2) − 𝑓 (𝑡1) = 𝐀𝑡2
0 − 𝐀𝑡1

0 = 1
2𝜋𝑖 ∫Γ 𝑧𝑡2 (𝑧𝐈𝑚 − 𝐀0)−1𝑑𝑧 − 1

2𝜋𝑖 ∫Γ 𝑧𝑡1 (𝑧𝐈𝑚 − 𝐀0)−1𝑑𝑧

= 1
2𝜋𝑖 ∫Γ(𝑧

𝑡2 − 𝑧𝑡1 )(𝑧𝐈𝑚 − 𝐀0)−1𝑑𝑧.

Parameterizing Γ with 𝑟 ∈ [𝑎, 𝑏] and applying absolute values on both sides, we have

|𝑓 (𝑡2) − 𝑓 (𝑡1)|= 1
2𝜋𝑖

|||||∫
𝑏

𝑎

(𝑧(𝑟)𝑡2 − 𝑧(𝑟)𝑡1 )(𝑧(𝑟)𝐈𝑚 − 𝐀0)−1𝑧′(𝑟)𝑑𝑟
|||||

≤ 1
2𝜋𝑖

max
𝑟∈[𝑎,𝑏]

|𝑧′(𝑟)| max
𝑟∈[𝑎,𝑏]

‖(𝑧(𝑟)𝐈𝑚 − 𝐀0)−1‖∫ 𝑏

𝑎

|𝑧(𝑟)𝑡2 − 𝑧(𝑟)𝑡1 |𝑑𝑟

≤ 1
2𝜋𝑖

max
𝑟∈[𝑎,𝑏]

|𝑧′(𝑟)| max
𝑟∈[𝑎,𝑏]

𝑧(𝑟)𝑡1 max
𝑟∈[𝑎,𝑏]

‖(𝑧(𝑟)𝐈𝑚 − 𝐀0)−1‖∫ 𝑏

𝑎

|𝑧(𝑟)𝑡2−𝑡1 − 1|𝑑𝑟. (A1)

Using the Taylor series expansion, we have 𝑧(𝑥) = 1 + 𝑥 ln 𝑧 + (ln 𝑧)2 𝑥2

2! +⋯. Letting

𝑀 = 1
2𝜋𝑖

max
𝑟∈[𝑎,𝑏]

|𝑧′(𝑟)| max
𝑟∈[𝑎,𝑏]

𝑧(𝑟)𝑡1 max
𝑟∈[𝑎,𝑏]

‖(𝑧(𝑟)𝐈𝑚 − 𝐀0)−1‖,
we can write (A1) as

|𝑓 (𝑡2) − 𝑓 (𝑡1)| ≤ 𝑀 ∫
𝑏

𝑎

∞∑
𝑖=1

(ln 𝑧(𝑟))𝑖
(𝑡2 − 𝑡1)𝑖

𝑖!
𝑑𝑟

≤ 𝑀 ln |𝑧(𝑟)||𝑏 − 𝑎|(𝑡2 − 𝑡1) + 𝑂((𝑡2 − 𝑡1)2).

Thus, it is clear that 𝑓 ∈ 𝐶([0,∞),𝑀𝑚). Consequently, 𝑦 ∈ 𝐶[0,∞). By the assumption that the dom-

inate eigenvalue of 𝐀𝜖0
is less than one and the population goes through a decline phase, there exists

a 𝑡1 < 𝑇𝐶 such that 𝑦(𝑡1) < 1. Additionally, we have 𝑦(𝑡2) > 1 for some 𝑡2 > 𝑇𝐶 since the dominate

eigenvalue of 𝐀0 is greater than one. Therefore, by the intermediate value theorem, there exists a

solution to 𝑦(𝑡) = 1. ■

Proposition A.2. Assume 𝐀0 and 𝐀𝜖0
are diagonalizable and 𝐀0 has no nonpositive real eigenvalues.

Then, Equation (8) is equivalent to

1 =
𝑚∑

𝑘=1

𝑚∑
𝑗=1

𝜆
𝑡−𝑇𝐶

𝑘
𝜔𝑗𝑘𝝂𝑗

𝑚∑
𝑖=1

𝜆
𝑇𝐶

𝑖,𝜖0
𝝎𝑖,𝜖0

𝝂𝑖,𝜖0
𝐩0, (A2)

where 𝝎𝑗 and 𝝂𝑗 are the right and left eigenvectors of 𝐀0, and 𝝎𝑗,𝜖0
and 𝝂𝑗,𝜖0

are the right and left
eigenvectors of 𝐀𝜖0

.
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Proof. Since the matrices 𝐀0 and 𝐀𝜖0
are diagonalizable, we write them as

𝐀0 = 𝑾𝑫𝑾
−1, 𝐀𝜖0

= 𝑾 𝜖0
𝑫𝜖0

𝑾
−1
𝜖0

, (A3)

where 𝑫 and 𝑫𝜖0
are diagonal matrices containing the eigenvalues 𝜆𝑖 of 𝐀0 and 𝜆𝑖,𝜖0

of 𝐀𝜖0
on

their diagonal, respectively. The columns of matrices 𝑾 and 𝑾 𝜖0
contain the corresponding right

eigenvectors,

𝑾 = (𝝎1 𝝎2 ⋯ 𝝎𝑚), 𝑾 𝜖0
= (𝝎1,𝜖0 𝝎2,𝜖0 ⋯ 𝝎𝑚,𝜖0

),

and the rows of 𝑾 −1 and 𝑾 −1
𝜖0

contain the corresponding left eigenvectors,

𝑾
−1 =

⎛⎜⎜⎜⎜⎝
𝝂1
𝝂2
⋮
𝝂𝑚

⎞⎟⎟⎟⎟⎠
,𝑾 −1

𝜖0
=

⎛⎜⎜⎜⎜⎝
𝝂1,𝜖0
𝝂2,𝜖0
⋮

𝝂𝑚,𝜖0

⎞⎟⎟⎟⎟⎠
.

Using Equation (A3), Equation (8) can be rewritten as

1 = 𝟏⊺𝑚𝑾𝑫
𝑡−𝑇𝐶𝑾

−1
𝑾 𝜖0

𝑫
𝑇𝐶
𝜖0
𝑾

−1
𝜖0
𝐩0

= 𝟏⊺𝑚
𝑚∑

𝑗=1
𝜆
𝑡−𝑇𝐶

𝑗
𝝎𝑗𝝂𝑗

𝑚∑
𝑖=1

𝜆
𝑇𝐶

𝑖,𝜖0
𝝎𝑖,𝜖0

𝝂𝑗,𝜖0
𝐩0

=
𝑚∑

𝑘=1

𝑚∑
𝑗=1

𝜆
𝑡−𝑇𝐶

𝑘
𝜔𝑗𝑘𝝂𝑗

𝑚∑
𝑖=1

𝜆
𝑇𝐶

𝑖,𝜖0
𝝎𝑖,𝜖0

𝝂𝑖,𝜖0
𝐩0,

which gives the desired results. ■




