257 research outputs found

    Loss of Developmental Diapause as Prerequisite for Social Evolution in Bees

    Get PDF
    Diapause is a physiological arrest of development ahead of adverse environmental conditions and is a critical phase of the life cycle of many insects. In bees, diapause has been reported in species from all seven taxonomic families. However, they exhibit a variety of diapause strategies. These different strategies are of particular interest since shifts in the phase of the insect life cycle in which diapause occurs have been hypothesized to promote the evolution of sociality. Here we provide a comprehensive evaluation of this hypothesis with phylogenetic analysis and ancestral state reconstruction (ASR) of the ecological and evolutionary factors associated with diapause phase. We find that social lifestyle, latitude and voltinism are significant predictors of the life stage in which diapause occurs. ASR revealed that the most recent common ancestor of all bees likely exhibited developmental diapause and shifts to adult, reproductive, or no diapause have occurred in the ancestors of lineages in which social behaviour has evolved. These results provide fresh insight regarding the role of diapause as a prerequisite for the evolution of sociality in bees

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Signal Detection on the Battlefield: Priming Self-Protection vs. Revenge-Mindedness Differentially Modulates the Detection of Enemies and Allies

    Get PDF
    Detecting signs that someone is a member of a hostile outgroup can depend on very subtle cues. How do ecology-relevant motivational states affect such detections? This research investigated the detection of briefly-presented enemy (versus friend) insignias after participants were primed to be self-protective or revenge-minded. Despite being told to ignore the objectively nondiagnostic cues of ethnicity (Arab vs. Western/European), gender, and facial expressions of the targets, both priming manipulations enhanced biases to see Arab males as enemies. They also reduced the ability to detect ingroup enemies, even when these faces displayed angry expressions. These motivations had very different effects on accuracy, however, with self-protection enhancing overall accuracy and revenge-mindedness reducing it. These methods demonstrate the importance of considering how signal detection tasks that occur in motivationally-charged environments depart from results obtained in conventionally motivationally-inert laboratory settings.National Institute of Mental Health (U.S.) (Grant MH64734)U.S. Army Research Institute for the Behavioral and Social Sciences (Grant W74V8H-05-K-0003)National Science Foundation (U.S.) (Grant BCS-0642873

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Modelling the effects of glucagon during glucose tolerance testing.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2019-12-01, epub 2019-12-12Publication status: PublishedBACKGROUND:Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship between glucagon and glucose, whereas the second model assumes a linear relationship. RESULTS:Both models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test (IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon sensitivity (δ). CONCLUSIONS:The models are used to investigate how different degrees of pax'tient glucagon sensitivity and effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests, providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated and predicted
    • …
    corecore