22 research outputs found

    Clinical Management of Congenital Hypogonadotropic Hypogonadism

    Get PDF
    The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (approximate to 10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.Peer reviewe

    Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    Get PDF
    The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes

    Pathogenic mosaic variants in congenital hypogonadotropic hypogonadism

    Full text link
    PURPOSE Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling

    Health impact of US military service in a large population-based military cohort: findings of the Millennium Cohort Study, 2001-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combat-intense, lengthy, and multiple deployments in Iraq and Afghanistan have characterized the new millennium. The US military's all-volunteer force has never been better trained and technologically equipped to engage enemy combatants in multiple theaters of operations. Nonetheless, concerns over potential lasting effects of deployment on long-term health continue to mount and are yet to be elucidated. This report outlines how findings from the first 7 years of the Millennium Cohort Study have helped to address health concerns related to military service including deployments.</p> <p>Methods</p> <p>The Millennium Cohort Study was designed in the late 1990s to address veteran and public concerns for the first time using prospectively collected health and behavioral data.</p> <p>Results</p> <p>Over 150 000 active-duty, reserve, and National Guard personnel from all service branches have enrolled, and more than 70% of the first 2 enrollment panels submitted at least 1 follow-up survey. Approximately half of the Cohort has deployed in support of operations in Iraq and Afghanistan.</p> <p>Conclusion</p> <p>The Millennium Cohort Study is providing prospective data that will guide public health policymakers for years to come by exploring associations between military exposures and important health outcomes. Strategic studies aim to identify, reduce, and prevent adverse health outcomes that may be associated with military service, including those related to deployment.</p

    Biotin-Responsive Basal Ganglia Disease Maps to 2q36.3 and Is Due to Mutations in SLC19A3

    No full text
    Biotin-responsive basal ganglia disease (BBGD) is a recessive disorder with childhood onset that presents as a subacute encephalopathy, with confusion, dysarthria, and dysphagia, and that progresses to severe cogwheel rigidity, dystonia, quadriparesis, and eventual death, if left untreated. BBGD symptoms disappear within a few days with the administration of high doses of biotin (5–10 mg/kg/d). On brain magnetic resonance imaging examination, patients display central bilateral necrosis in the head of the caudate, with complete or partial involvement of the putamen. All patients diagnosed to date are of Saudi, Syrian, or Yemeni ancestry, and all have consanguineous parents. Using linkage analysis in four families, we mapped the genetic defect near marker D2S2158 in 2q36.3 (LOD=5.9; θ=0.0) to a minimum candidate region (∼2 Mb) between D2S2354 and D2S1256, on the basis of complete homozygosity. In this segment, each family displayed one of two different missense mutations that altered the coding sequence of SLC19A3, the gene for a transporter related to the reduced-folate (encoded by SLC19A1) and thiamin (encoded by SLC19A2) transporters

    A Locus for Autosomal Dominant Mitral Valve Prolapse on Chromosome 11p15.4

    Get PDF
    Mitral valve prolapse (MVP) is a common cardiovascular abnormality in the United States, occurring in ∼2.4% of the general population. Clinically, patients with MVP exhibit fibromyxomatous changes in one or both of the mitral leaflets that result in superior displacement of the leaflets into the left atrium. Although often clinically benign, MVP can be associated with important accompanying sequelae, including mitral regurgitation, bacterial endocarditis, congestive heart failure, atrial fibrillation, and even sudden death. MVP is genetically heterogeneous and is inherited as an autosomal dominant trait that exhibits both sex- and age-dependant penetrance. In this report, we describe the results of a genome scan and show that a locus for MVP maps to chromosome 11p15.4. Multipoint parametric analysis performed by use of GENEHUNTER gave a maximum LOD score of 3.12 for the chromosomal region immediately surrounding the four-marker haplotype D11S4124-D11S2349-D11S1338-D11S1323, and multipoint nonparametric analysis (NPL) confirms this finding (NPL=38.59; P=.000397). Haplotype analysis across this region defines a 4.3-cM region between the markers D11S1923 and D11S1331 as the location of a new MVP locus, MMVP2, and confirms the genetic heterogeneity of this disorder. The discovery of genes involved in the pathogenesis of this common disease is crucial to understanding the marked variability in disease expression and mortality seen in MVP

    Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes

    No full text
    BACKGROUND: Kallmann's syndrome (KS) is a clinically and genetically heterogeneous disorder consisting of idiopathic hypogonadotropic hypogonadism (IHH) and anosmia. Mutations in KAL1 causing the X-linked form of KS have been identified in 10% of all KS patients and consistently result in a severe reproductive phenotype. KAL1 gene encodes for anosmin-1, a key protein involved in olfactory and GnRH neuronal migration through a putative interaction with FGFR1. Heterozygous mutations in the FGFR1 gene accompanied by a high frequency of cleft palate and other facial dysmorphisms were recently identified in 8% of a large KS cohort, yet the reproductive phenotype of KS patients harboring FGFR1 mutations has not been described. RESULTS: One hundred and fifty probands with KS (130 males and 20 females) were studied to determine the frequency and distribution of FGFR1 mutations and their detailed reproductive phenotypes. Fifteen heterozygous mutations in unrelated probands were identified. Twelve missense mutations (p.R78C, p.V102I, p.D224H, p.G237D, p.R254Q, p.V273M, p.E274G, p.Y339C, p.S346C, p.I538V, p.G703S and p.G703R) were distributed among the first, second and third immunoglobulin-like domains (D1-D3), as well as the tyrosine kinase domain (TKD). The mutations Y339C and S346C are located in exon 8B and code for the isoform FGFR1c. Additionally, two nonsense mutations (p.T585X and p.R622X) were documented in the TKD of the protein. A wide spectrum of reproductive function was observed among KS probands including: (1) a severe phenotype demonstrated by microphallus, cryptorchidism, no pubertal development, undetectable serum gonadotropins and low serum testosterone (T) and inhibin B; (2) partial pubertal development; (3) the fertile eunuch variant of IHH with normal testicular size and active spermatogenesis with a reversal of HH after T therapy. In addition, we found an even wider spectrum of reproductive function within pedigrees carrying an FGFR1 mutation ranging from IHH to delayed puberty to normal reproductive function (anosmia only or asymptomatic carriers). These observations strongly suggest a role for other genes that modify the phenotype of FGFR1 mutations. CONCLUSION: KS patients and family members carrying an FGFR1 mutation present a broad spectrum of pubertal development in contrast to the almost uniform severe clinical phenotype described in KS subjects with a KAL1 mutation. Additionally, this report implicates the isoform FGFR1c in the pathogenesis of K

    DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development

    No full text
    Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice
    corecore