9 research outputs found

    Immunological insights into COVID-19 in Southern Nigeria

    Get PDF
    Introduction: One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods: We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result: Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion: These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone

    Prevalence of malaria, typhoid, toxoplasmosis and rubella among febrile children in Cameroon

    No full text
    Abstract Background The current roll-out of rapid diagnostic tests (RDTs) in many endemic countries has resulted in the reporting of fewer cases of malaria-attributed illnesses. However, lack of knowledge of the prevalence of other febrile illnesses and affordable diagnostic tests means that febrile patients are not managed optimally. This study assessed the prevalence of commonly treatable or preventable febrile illnesses in children between 6 months and 15 years using rapid diagnostic tests at the point-of-care. Methods Febrile children were enrolled between February-April 2014 at a health facility after obtaining informed consent from parent. Eligible participants were aged 6 months-15 years with a history of fever in the last 24 h or axillary temperature ≥38 °C at consultation. All participants were tested using RDTs for malaria, typhoid, toxoplasmosis and rubella. Malaria parasites were further identified by microscopy and PCR. Clinical and household characteristics were recorded and association with pathogens determined. Results Of the 315 children enrolled, the mean age was 5.8 ± 3.8 years. Stomach pain (41.2 %) was the most reported symptom. Prior to attending the health facility, 70.8 % had taken antipyretics, 27.9 % antimalarials, 11.4 % antibiotics and 13.3 % antifungal drugs. Among 315 children with fever, based on RDTs, 56.8 % were infected with malaria, 4.4 % with typhoid, 3.2 % with acute toxoplasmosis, and 1.3 % with rubella (all positive for rubella were in the same family and not vaccinated). All non-malarial infections were co-infections and approximately 30 % of the fever cases went un-diagnosed. Malaria prevalence by microscopy and PCR was 43.4 and 70.2 % respectively. The sensitivity and specificity of RDTs for the diagnosis of malaria were 75.98 and 100 % respectively, with 0.73 measurement agreement between RDTs and microscopy while that of RDT and PCR were 81 and 100 % respectively with a K value of 0.72. The use of Insecticide Treated Bednets was 44 %. There was a significant association between ITN non-usage and malaria (p = 0. 029) as well as drinking water and presence of typhoid (p = 0.047). No association was observed between type of housing and malaria, or toxoplasmosis and raising cats. Conclusion Though malaria still remains the major cause of fever in children, using RDTs for other treatable febrile illnesses like typhoid and toxoplasmosis could facilitate the optimal management of febrile illnesses in children especially when these occur as co-infections with malari

    Additional file 1: of Prevalence of malaria, typhoid, toxoplasmosis and rubella among febrile children in Cameroon

    No full text
    Diagnostic performance of RDTs used for diagnosis of commonly treatable or preventable febrile illnesses in children. Table shows the diagnostic performance of rapid diagnostic tests used for the diagnosis of commonly treatable or preventable febrile illnesses in children as reported by the manufacturer. (DOCX 13 kb

    A comparison of thick-film microscopy, rapid diagnostic test, and polymerase chain reaction for accurate diagnosis of Plasmodium falciparum malaria

    No full text
    Abstract Background Accurate diagnosis of malaria is important for effective disease management and control. In Cameroon, presumptive clinical diagnosis, thick-film microscopy (TFM), and rapid diagnostic tests (RDT) are commonly used to diagnose cases of Plasmodium falciparum malaria. However, these methods lack sensitivity to detect low parasitaemia. Polymerase chain reaction (PCR), on the other hand, enhances the detection of sub-microscopic parasitaemia making it a much-needed tool for epidemiological surveys, mass screening, and the assessment of interventions for malaria elimination. Therefore, this study sought to determine the frequency of cases missed by traditional methods that are detected by PCR. Methods Blood samples, collected from 551 febrile Cameroonian patients between February 2014 and February 2015, were tested for P. falciparum by microscopy, RDT and PCR. The hospital records of participants were reviewed to obtain data on the clinical diagnosis made by the health care worker. Results The prevalence of malaria by microscopy, RDT and PCR was 31%, 45%, and 54%, respectively. However, of the 92% of participants diagnosed as having clinical cases of malaria by the health care worker, 38% were malaria-negative by PCR. PCR detected 23% and 12% more malaria infections than microscopy and RDT, respectively. A total of 128 (23%) individuals had sub-microscopic infections in the study population. The sensitivity of microscopy, RDT, and clinical diagnosis was 57%, 78% and 100%; the specificity was 99%, 94%, and 17%; the positive predictive values were 99%, 94%, and 59%; the negative predictive values were 66%, 78%, and 100%, respectively. Thus, 41% of the participants clinically diagnosed as having malaria had fever caused by other pathogens. Conclusions Malaria diagnostic methods, such as TFM and RDT missed 12–23% of malaria cases detected by PCR. Therefore, traditional diagnostic approaches (TFM, RDT and clinical diagnosis) are not adequate when accurate epidemiological data are needed for monitoring malaria control and elimination interventions

    Lassa virus in novel hosts: insights into the epidemiology of lassa virus infections in southern Nigeria

    No full text
    ABSTRACTIdentification of the diverse animal hosts responsible for spill-over events from animals to humans is crucial for comprehending the transmission patterns of emerging infectious diseases, which pose significant public health risks. To better characterize potential animal hosts of Lassa virus (LASV), we assessed domestic and non-domestic animals from 2021–2022 in four locations in southern Nigeria with reported cases of Lassa fever (LF). Birds, lizards, and domestic mammals (dogs, pigs, cattle and goats) were screened using RT-qPCR, and whole genome sequencing was performed for lineage identification on selected LASV positive samples. Animals were also screened for exposure to LASV by enzyme-linked immunosorbent assay (ELISA). Among these animals, lizards had the highest positivity rate by PCR. Genomic sequencing of samples in most infected animals showed sub-lineage 2 g of LASV. Seropositivity was highest among cattle and lowest in pigs. Though the specific impact these additional hosts may have in the broader virus-host context are still unknown – specifically relating to pathogen diversity, evolution, and transmission – the detection of LASV in non-rodent hosts living in proximity to confirmed human LF cases suggests their involvement during transmission as potential reservoirs. Additional epidemiological data comparing viral genomes from humans and animals, as well as those circulating within the environment will be critical in understanding LASV transmission dynamics and will ultimately guide the development of countermeasures for this zoonotic health threat

    Table_1_Immunological insights into COVID-19 in Southern Nigeria.docx

    No full text
    IntroductionOne of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic.MethodsWe used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. ResultOur study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. DiscussionThese findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.</p
    corecore