55 research outputs found

    Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.)

    Get PDF
    IntroductionSafe and efficient treatment of organic waste is crucial to developing a sustainable food system around the world. Soil biosolarization (SBS) is a soil treatment technique that can use organic solid wastes to treat the soil in a way that is alternative to the use of chemical fumigants to improve soil fertility in agriculture.MethodsIn this study, two types of organic food wastes, green tea waste (GTW) and fish waste (FW), were evaluated for the feasibility of being applied as soil amendments within simulations of high-temperature cycle SBS. The evaluation was conducted by execution of three groups of measurements: gas and organic volatile emission profile, residual soil phytotoxicity and weed suppression, and cultivar growth (Lactuca sativa L. var. ramosa Hort.).Results and DiscussionGreen tea waste contributed to elevated levels of soil respiration and the evolution of signature volatile organic compounds during the simulated SBS. In the soil amended with green tea waste and then undergoing SBS the phyto compatibility was restored after residual phytotoxicity dissipation and a complete weed suppression was achieved. By using an application rate of 2.5% (w/w, mass fraction of green tea waste in total soil-waste mixture) green tea waste cultivar growth comparable to that of the non-treated soil (NTS) group was attained, with a more efficient nitrogen utilization and higher residual soil nitrogen content enabling the improvement of the continuous cropping system. FW at 1% (w/w, mass fraction of FW in total soil-waste mixture) promoted cultivar growth despite the significant reduction of the nitrogen (p value=0.02) and phosphorus (p value=0.03) contents in the cultivar leaves. A significant increase of the sodium content together with an increase of iron and chromium, which exceeded the permissible limit, were observed. These results provide new information about amendment selection for the SBS process

    Assessment of biogas production and microbial ecology in a high solid anaerobic digestion of major California food processing residues

    No full text
    High-solids anaerobic digestion (HSAD) was performed using mixtures of tomato or grape pomace, dry bovine manure and mature green waste compost at a total solids content of 28%. Various feedstock loading levels (FLL) were tested over multiple fed-batch cycles. TP showed greater methane yield at 201.61 mL/g dry pomace when digested at a mesophilic temperature with 5% (by dry weight) FLL. Methane yield from GP was approximately 132 mL/g_dry pomace in both thermophilic and mesophilic conditions with up to 5% FLL. 16S rRNA gene sequencing of the different HSAD systems was used to profile bacteria and archaea. The results showed shifts between Methanoculleus and Methanosarcina genera in response to feedstock and operating temperature. These data can enable additional studies to scale up HSAD of these waste streams, optimize HSAD conditions for improved yield and stability, and understand the microbiota structures that relate to HSAD performance

    Almond processing residues as a source of organic acid biopesticides during biosolarization.

    No full text
    Biosolarization utilizes organic amendments to produce biopesticide compounds in soil that can work in tandem with other stresses to inactivate agricultural pests. The prospect of using by-products from industrial almond processing as amendments for biosolarization was assessed. Soil mesocosms were used to simulate biosolarization using various almond by-products, application rates, and incubation times. Several potentially biopesticidal organic acids were identified and quantified in the soil, and the toxicity of soil extracts was evaluated for the root lesion nematode (Pratylenchus vulnus). It was determined that both almond hulls and a mixture of hulls and shells harbored several acids, the concentration of which was enhanced 1-7 fold via fermentation by native soil microbes. Organic acid concentration in the soil showed a significant linear relationship with the quantity of waste biomass amended. Extracts from soils containing at least 2.5% incorporated biomass by dry weight showed a 84-100% mortality of nematodes, which corresponded to acid concentrations 0.75 mg/g (2.0 g/L) or greater. This study showed that almond processing by-products - hulls and a hull and shell mixture - were suitable amendments for control of P. vulnus and potentially other soil agricultural pests in the context of biosolarization

    Changes of Fusarium oxysporum f.sp. lactucae levels and soil microbial community during soil biosolarization using chitin as soil amendment.

    No full text
    Regulatory pressure along with environmental and human health concerns drive the development of soil fumigation alternatives such as soil biosolarization (SBS). SBS involves tarping soil that is at field capacity with a transparent film following amendment with certain organic materials. Heating via the greenhouse effect results in an increase of the soil temperature. The organic amendments can promote microbial activity that can enhance pest inactivation by depleting oxygen, producing biopesticidal fermentation products, and competing with pests. The properties of the organic amendments can heavily influence the type and magnitude of these effects. This study evaluated the viability of chitin as a novel SBS soil amendment to influence soil fungal and bacterial microbial communities, including control of the plant pathogen Fusarium oxysporum f.sp. lactucae (FOL). Changes to FOL and the broader soil microbiota were monitored in response to biosolarization using 0.1% (by dry weight) amendment with chitin (Rootguard). FOL suppression was only observed in chitin amended soils that were incubated at room temperature, not under solarized conditions. Conversely, it decreased solarization efficacy in the upper (0-10 cm) soil layer. The presence of chitin also showed increase in FOL under anaerobic and fluctuating temperature regime conditions. Biosolarization with chitin amendment did exhibit an impact on the overall soil microbial community. The fungal genus Mortierella and the bacterial family Chitinophagaceae were consistently enriched in biosolarized soils with chitin amendment. This study showed low potential FOL suppression due chitin amendment at the studied levels. However, chitin amendment showed a higher impact on the fungal community than the bacterial community. The impact of these microbial changes on crop protection and yields need to be studied in the long-term

    Changes of Fusarium oxysporum f.sp. lactucae levels and soil microbial community during soil biosolarization using chitin as soil amendment.

    No full text
    Regulatory pressure along with environmental and human health concerns drive the development of soil fumigation alternatives such as soil biosolarization (SBS). SBS involves tarping soil that is at field capacity with a transparent film following amendment with certain organic materials. Heating via the greenhouse effect results in an increase of the soil temperature. The organic amendments can promote microbial activity that can enhance pest inactivation by depleting oxygen, producing biopesticidal fermentation products, and competing with pests. The properties of the organic amendments can heavily influence the type and magnitude of these effects. This study evaluated the viability of chitin as a novel SBS soil amendment to influence soil fungal and bacterial microbial communities, including control of the plant pathogen Fusarium oxysporum f.sp. lactucae (FOL). Changes to FOL and the broader soil microbiota were monitored in response to biosolarization using 0.1% (by dry weight) amendment with chitin (Rootguard). FOL suppression was only observed in chitin amended soils that were incubated at room temperature, not under solarized conditions. Conversely, it decreased solarization efficacy in the upper (0-10 cm) soil layer. The presence of chitin also showed increase in FOL under anaerobic and fluctuating temperature regime conditions. Biosolarization with chitin amendment did exhibit an impact on the overall soil microbial community. The fungal genus Mortierella and the bacterial family Chitinophagaceae were consistently enriched in biosolarized soils with chitin amendment. This study showed low potential FOL suppression due chitin amendment at the studied levels. However, chitin amendment showed a higher impact on the fungal community than the bacterial community. The impact of these microbial changes on crop protection and yields need to be studied in the long-term
    corecore