53 research outputs found

    Solvable Kinetic Gaussian Model in External Field

    Full text link
    In this paper, the single-spin transition dynamics is used to investigate the kinetic Gaussian model in a periodic external field. We first derive the fundamental dynamic equations, and then treat an isotropic d-dimensional hypercubic lattice Gaussian spin system with Fourier's transformation method. We obtain exactly the local magnetization and the equal-time pair correlation function. The critical characteristics of the dynamical, the complex susceptibility, and the dynamical response are discussed. The results show that the time evolution of the dynamical quantities and the dynamical responses of the system strongly depend on the frequency and the wave vector of the external field.Comment: 11 page

    Glauber Critical Dynamics: Exact Solution of the Kinetic Gaussian Model

    Full text link
    In this paper, we have exactly solved Glauber critical dynamics of the Gaussian model on three dimensions. Of course, it is much easy to apply to low dimensional case. The key steps are that we generalize the spin change mechanism from Glauber's single-spin flipping to single-spin transition and give a normalized version of the transition probability . We have also investigated the dynamical critical exponent and found surprisingly that the dynamical critical exponent is highly universal which refer to that for one- two- and three-dimensions they have same value independent of spatial dimensionality in contrast to static (equilibrium) critical exponents.Comment: 9 page

    Interplay between quasi-periodicity and disorder in quantum spin chains in a magnetic field

    Full text link
    We study the interplay between disorder and a quasi periodic coupling array in an external magnetic field in a spin-1/2 XXZ chain. A simple real space decimation argument is used to estimate the magnetization values where plateaux show up. The latter are in good agreement with exact diagonalization results on fairly long XX chains. Spontaneous susceptibility properties are also studied, finding a logarithmic behaviour similar to the homogeneously disordered case.Comment: 5 RevTeX pages, 5 Postscript figures include

    Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions

    Full text link
    Users of music streaming, video streaming, news recommendation, and e-commerce services often engage with content in a sequential manner. Providing and evaluating good sequences of recommendations is therefore a central problem for these services. Prior reweighting-based counterfactual evaluation methods either suffer from high variance or make strong independence assumptions about rewards. We propose a new counterfactual estimator that allows for sequential interactions in the rewards with lower variance in an asymptotically unbiased manner. Our method uses graphical assumptions about the causal relationships of the slate to reweight the rewards in the logging policy in a way that approximates the expected sum of rewards under the target policy. Extensive experiments in simulation and on a live recommender system show that our approach outperforms existing methods in terms of bias and data efficiency for the sequential track recommendations problem

    Kinetics of a non-glauberian Ising model: global observables and exact results

    Full text link
    We analyse the spin-flip dynamics in kinetic Ising chains with Kimball-Deker-Haake (KDH) transition rates, and evaluate exactly the evolution of global quantities like magnetisation and its fluctuations, and the two-time susceptibilities and correlations of the global spin and the global three-spin. Information on the ageing behaviour after a quench to zero temperature is extracted

    Universal Critical Behavior of Aperiodic Ferromagnetic Models

    Full text link
    We investigate the effects of geometric fluctuations, associated with aperiodic exchange interactions, on the critical behavior of qq-state ferromagnetic Potts models on generalized diamond hierarchical lattices. For layered exchange interactions according to some two-letter substitutional sequences, and irrelevant geometric fluctuations, the exact recursion relations in parameter space display a non-trivial diagonal fixed point that governs the universal critical behavior. For relevant fluctuations, this fixed point becomes fully unstable, and we show the apperance of a two-cycle which is associated with a novel critical behavior. We use scaling arguments to calculate the critical exponent α\alpha of the specific heat, which turns out to be different from the value for the uniform case. We check the scaling predictions by a direct numerical analysis of the singularity of the thermodynamic free-energy. The agreement between scaling and direct calculations is excellent for stronger singularities (large values of qq). The critical exponents do not depend on the strengths of the exchange interactions.Comment: 4 pages, 1 figure (included), RevTeX, submitted to Phys. Rev. E as a Rapid Communicatio

    Quasi-periodic spin chains in a magnetic field

    Full text link
    We study the interplay between a (quasi) periodic coupling array and an external magnetic field in a spin-1/2 XXZ chain. A new class of magnetization plateaux are obtained by means of Abelian bosonization methods which give rise to a sufficient quantization condition. The investigation of magnetic phase diagrams via exact diagonalization of finite clusters finds a complete agreement with the continuum treatment in a variety of situations.Comment: 4 pages RevTeX, 5 PostScript figures included. Final version to appear in PR

    New Dynamic Monte Carlo Renormalization Group Method

    Full text link
    The dynamical critical exponent of the two-dimensional spin-flip Ising model is evaluated by a Monte Carlo renormalization group method involving a transformation in time. The results agree very well with a finite-size scaling analysis performed on the same data. The value of z=2.13±0.01z = 2.13 \pm 0.01 is obtained, which is consistent with most recent estimates

    Nonequilibrium relaxation of the two-dimensional Ising model: Series-expansion and Monte Carlo studies

    Full text link
    We study the critical relaxation of the two-dimensional Ising model from a fully ordered configuration by series expansion in time t and by Monte Carlo simulation. Both the magnetization (m) and energy series are obtained up to 12-th order. An accurate estimate from series analysis for the dynamical critical exponent z is difficult but compatible with 2.2. We also use Monte Carlo simulation to determine an effective exponent, z_eff(t) = - {1/8} d ln t /d ln m, directly from a ratio of three-spin correlation to m. Extrapolation to t = infinity leads to an estimate z = 2.169 +/- 0.003.Comment: 9 pages including 2 figure

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery
    corecore