15,169 research outputs found

    A novel intermediate in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase

    Get PDF
    An unusual intermediate bound to the enzyme was detected in the interaction of thiosemicarbazide with sheep liver serine hydroxymethyltransferase. This intermediate had absorbance maxima at 464 and 440 nm. Such spectra are characteristic of resonance stabilized intermediates detected in the interaction of substrates and quasisubstrates with pyridoxal phosphate enzymes. An intermediate of this kind has not been detected in the interaction of thiosemicarbazide with other pyridoxal phosphate enzymes. This intermediate was generated slowly (t½ = 4 min) following the addition of thiosemicarbazide (200 μM) to sheep liver serine hydroxymethyltransferase (5μM). It was bound to the enzyme as evidenced by circular dichroic bands at 464 and 440 nm and the inability to be removed upon Centricon filtration. The kinetics of interaction revealed that thiosemicarbazide was a slow binding reversible inhibitor in this phase with a kon of 11 M-1 s-1 and a koff of 5 s-1. The intermediate was converted very slowly (k = 4 × 10-5 s-1) to the final products, namely the apoenzyme and the thiosemicarbazone of pyridoxal phosphate. A minimal kinetic mechanism involving the initial conversion to the intermediate absorbing at longer wavelengths and the conversion of this intermediate to the finalp roduct, as well as, the formation of pyridoxal phosphate-thiosemicarbazone directly by an alternate pathway is proposed

    Measurement of the iron spectrum from 60 to 200 GeV per nucleon

    Get PDF
    The high energy gas Cerenkov Spectrometer (HEGCS) was flown by balloon from Palestine, Texas on September 30, 1983. The instrument maintained an altitude of 118,000 ft (4.7 g/sq cms) for 6 hours. Details of the ongoing data analysis and preliminary results on the Fe spectrum to 10 to the 13th power eV/nucleus are given

    Prospects of searches for long-lived charged particles with MoEDAL

    Get PDF
    We study the prospects of searches for exotic long-lived particles with the MoEDAL detector at the LHC, assuming the integrated luminosity of 30 fb1^{-1} that is expected at the end of Run 3. MoEDAL incorporates nuclear track detectors deployed a few metres away from the interaction point, which are sensitive to any highly-ionizing particles. Hence MoEDAL is able to detect singly- or doubly-charged particles with low velocities β<0.15\beta < 0.15 or <0.3< 0.3, respectively, and lifetimes larger than O(1)m/c{\cal O}(1) \,{\rm m}/c. We examine the MoEDAL sensitivity to various singly-charged supersymmetric particles with long lifetimes and to several types of doubly-charged long-lived particles with different spins and SU(2) charges. We compare the prospective MoEDAL mass reaches to current limits from ATLAS and CMS, which involve auxiliary analysis assumptions. MoEDAL searches for doubly-charged fermions are particularly competitive.Comment: 19 pages, 5 figure

    High resolution Cherenkov detectors for cosmic ray isotope experiment

    Get PDF
    Cerenkov detectors are used to measure the velocity of particles in configurations designed to study the isotopic composition of galactic cosmic rays. The geometrical properties of the detector are outlined. Monte-Carlo simulations of photon propagation in a diffusive detector were undertaken. The scattering properties of diffusively reflecting white paint and of surface treatments for the radiator material were measured. It is found that the absorption of light in the radiator is an important light loss mechanism. The simulations are used to find optimal mapping techniques and data reduction strategies. The application of these techniques are discussed with respect to the large area isotopic composition experiment (ALICE) Cerenkov detector

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&

    The design of an experiment to detect low energy antiprotons

    Get PDF
    The techniques to be used in a balloon borne experiment APEX to detect 220 MeV antiprotons are described, paying particular attention to potential sources of background. Event time history is shown to be very effective in eliminating this background. Results of laboratory tests on the timing resolution which may be achieved are presented

    A Note on Mirror Symmetry for Manifolds with Spin(7) Holonomy

    Full text link
    Starting from the superconformal algebras associated with G2G_2 manifolds, I extend the algebra to the manifolds with spin(7) holonomy. I show how the mirror symmetry in manifolds with spin(7) holonomy arises as the automorphism in the extended sperconformal algebra. The automorphism is realized as 14 kinds of T-dualities on the supersymmetric T4T^4 toroidal fibrations. One class of Joyce's orbifolds are pairwise identified under the symmetry.Comment: 12 pages, harvmac bi

    On the supersymmetries of anti de Sitter vacua

    Full text link
    We present details of a geometric method to associate a Lie superalgebra with a large class of bosonic supergravity vacua of the type AdS x X, corresponding to elementary branes in M-theory and type II string theory.Comment: 16 page

    Heterotic strings on G_2 orbifolds

    Full text link
    We study compactification of heterotic strings to three dimensions on orbifolds of G_2 holonomy. We consider the standard embedding and show that the gauge group is broken from E_8 x E_8 or SO(32) to F_4 x E_8 or SO(25) respectively. We also compute the spectrum of massless states and compare with the results obtained from reduction of the 10-dimensional fields. Non-standard embeddings are discussed briefly. For type II compactifications we verify that IIB and IIA have equal massless spectrum.Comment: LaTex, 21 page

    Effective-mass theory for the anisotropic exciton in two-dimensional crystals: Application to phosphorene

    Full text link
    We present a theoretical study of the exciton binding energy for anisotropic two-dimensional crystals. We obtain analytical expressions from variational wave functions in different limits of the screening length to exciton size ratio and compare them with numerical solutions, both variational and exact. As an example, we apply these results to phosphorene, a monolayer of black phosphorous. Aided by density-functional-theory calculations for the evaluation of the two-dimensional polarizability, our analytical solution for the exciton binding energy gives a result which compares well with numerical ones and, in turn, with experimental values, as recently reportedThis work was supported by MINECO under Grants No. FIS2013-47328 and No. FIS2012-37549, by European Union structural funds and the Comunidad de Madrid Programs S2013/MIT-3007 and P2013/MIT-2850, and by Generalitat Valenciana under Grant No. PROMETEO/2012/011. E.P. also acknowledges the Ramón y Cajal Progra
    corecore