38 research outputs found

    Autosomal recessive nonsyndromic hearing impairment in two Finnish families due to the population enriched CABP2 c.637+1G > T variant

    Get PDF
    Background: The genetic architecture of hearing impairment in Finland is largely unknown. Here, we investigated two Finnish families with autosomal recessive nonsyndromic symmetrical moderate-to-severe hearing impairment. Methods: Exome and custom capture next-generation sequencing were used to detect the underlying cause of hearing impairment. Results: In both Finnish families, we identified a homozygous pathogenic splice site variant c.637+1G>T in CAPB2 that is known to cause autosomal recessive nonsyndromic hearing impairment. Four CABP2 variants have been reported to underlie autosomal recessive nonsyndromic hearing impairment in eight families from Iran, Turkey, Pakistan, Italy, and Denmark. Of these variants, the pathogenic splice site variant c.637+1G>T is the most prevalent. The c.637+1G>T variant is enriched in the Finnish population, which has undergone multiple bottlenecks that can lead to the higher frequency of certain variants including those involved in disease. Conclusion: We report two Finnish families with hearing impairment due to the CABP2 splice site variant c.637+1G>T.Peer reviewe

    Autosomal recessive nonsyndromic hearing impairment in two Finnish families due to the population enriched CABP2 c.637+1G > T variant

    Get PDF
    Background: The genetic architecture of hearing impairment in Finland is largely unknown. Here, we investigated two Finnish families with autosomal recessive nonsyndromic symmetrical moderate-to-severe hearing impairment.Methods: Exome and custom capture next-generation sequencing were used to detect the underlying cause of hearing impairment.Results: In both Finnish families, we identified a homozygous pathogenic splice site variant c.637+1G>T in CAPB2 that is known to cause autosomal recessive nonsyndromic hearing impairment. Four CABP2 variants have been reported to underlie autosomal recessive nonsyndromic hearing impairment in eight families from Iran, Turkey, Pakistan, Italy, and Denmark. Of these variants, the pathogenic splice site variant c.637+1G>T is the most prevalent. The c.637+1G>T variant is enriched in the Finnish population, which has undergone multiple bottlenecks that can lead to the higher frequency of certain variants including those involved in disease.Conclusion: We report two Finnish families with hearing impairment due to the CABP2 splice site variant c.637+1G>T.</p

    Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment

    Get PDF
    DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing. We identified novel bi-allelic compound heterozygous pathogenic variants in CLIC5. The variants identified, i.e., the missense [NM_016929.5:c.224T&gt;C; p.(L75P)] and the splicing (NM_016929.5:c.63+1G&gt;A), were validated using Sanger sequencing in all seven available family members and co-segregated with hearing impairment (HI) in the three hearing impaired family members. The three affected individuals were compound heterozygous for both variants, and all unaffected individuals were heterozygous for one of the two variants. Both variants were absent from the genome aggregation database (gnomAD), the Single Nucleotide Polymorphism Database (dbSNP), and the UK10K and Greater Middle East (GME) databases, as well as from 122 apparently healthy controls from Cameroon. We also did not identify these pathogenic variants in 118 unrelated sporadic cases of non-syndromic hearing impairment (NSHI) from Cameroon. In silico analysis showed that the missense variant CLIC5-p.(L75P) substitutes a highly conserved amino acid residue (leucine), and is expected to alter the stability, the structure, and the function of the CLIC5 protein, while the splicing variant CLIC5-(c.63+1G&gt;A) is predicted to disrupt a consensus donor splice site and alter the splicing of the pre-mRNA. This study is the second report, worldwide, to describe CLIC5 involvement in human hearing impairment, and thus confirms CLIC5 as a novel non-syndromic hearing impairment gene that should be included in targeted diagnostic gene panels

    Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland

    Get PDF
    The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.Peer reviewe

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    A Monoallelic Variant in REST Is Associated with Non-Syndromic Autosomal Dominant Hearing Impairment in a South African Family

    Get PDF
    Hearing impairment (HI) is a sensory disorder with a prevalence of 0.0055 live births in South Africa. DNA samples from a South African family presenting with progressive, autosomal dominant non-syndromic HI were subjected to whole-exome sequencing, and a novel monoallelic variant in REST [c.1244GC; p.(C415S)], was identified as the putative causative variant. The co-segregation of the variant was confirmed with Sanger Sequencing. The variant is absent from databases, 103 healthy South African controls, and 52 South African probands with isolated HI. In silico analysis indicates that the p.C415S variant in REST substitutes a conserved cysteine and results in changes to the surrounding secondary structure and the disulphide bonds, culminating in alteration of the tertiary structure of REST. Localization studies using ectopically expressed GFP-tagged Wild type (WT) and mutant REST in HEK-293 cells show that WT REST localizes exclusively to the nucleus; however, the mutant protein localizes throughout the cell. Additionally, mutant REST has an impaired ability to repress its known target AF1q. The data demonstrates that the identified mutation compromises the function of REST and support its implication in HI. This study is the second report, worldwide, to implicate REST in HI and suggests that it should be included in diagnostic HI panels

    Delineating the genotypic and phenotypic spectrum of HECW2-related neurodevelopmental disorders

    Get PDF
    Background Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. Methods Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. Results We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. Conclusion We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.Peer reviewe

    Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland

    Get PDF
    The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case

    A2ML1 and otitis media : novel variants, differential expression, and relevant pathways

    Get PDF
    A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.Peer reviewe
    corecore