1,686 research outputs found

    Forward-backward multiplicity correlations and leakage parameter behaviour in asymmetric high energy collisions

    Full text link
    Continuing previous work, forward-backward multiplicity correlations are studied in asymmetric collisions in the framework of the weighted superposition mechanism of different classes of events. New parameters for the asymmetric clan distribution and for the particle leakage from clans in one hemisphere to the opposite one are introduced to effectively classify different classes of collisions. This tool should be used to explore forward-backward multiplicity correlations in AB and pA collisions in present and future experiments at RHIC and LHC.Comment: 14 pages, 2 figures, latex 2e with amsmat

    Rare decay Z --> neutrino antineutrino photon photon via quartic gauge boson couplings

    Full text link
    We present a detailed calculation of the rare decay Z --> neutrino antineutrino photon photon via the quartic neutral gauge boson coupling Z-Z-photon-photon in the framework of the effective Lagrangian approach. The current experimental bound on this decay mode is then used to constrain the coefficients of this coupling. It is found that the bounds obtained in this way, of the order of 10−110^{-1}, are weaker than the ones obtained from the analysis of triple-boson production at LEP-2Comment: 5 pages, 2 figures, to appear in Physical Review D Brief Report

    Bosonic Quartic Couplings at LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W- gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After a careful study of the backgrounds and how to extract them from the data, we show that the process p p -> j j gamma l+ l- is potentially the most sensitive to deviations from the Standard Model, improving the sensitivity to anomalous couplings by up to a factor 10^4 (10^2) with respect to the present direct (indirect) limits.Comment: 18 pages, 2 figures, revised versio

    Probing the Higgs Field Using Massive Particles as Sources and Detectors

    Full text link
    In the Standard Model, all massive elementary particles acquire their masses by coupling to a background Higgs field with a non-zero vacuum expectation value. What is often overlooked is that each massive particle is also a source of the Higgs field. A given particle can in principle shift the mass of a neighboring particle. The mass shift effect goes beyond the usual perturbative Feynman diagram calculations which implicitly assume that the mass of each particle is rigidly fixed. Local mass shifts offer a unique handle on Higgs physics since they do not require the production of on-shell Higgs bosons. We provide theoretical estimates showing that the mass shift effect can be large and measurable, especially near pair threshold, at both the Tevatron and the LHC.Comment: 6 pages, no figures; Version 2 corrects some typographical errors of factors of 2 in equations 14, 17, 18 and 19 (all of the same origin) and mentions a linear collider as an interesting place to test the results of this pape

    Events with Isolated Charged Leptons and Large Missing Transverse Momentum at HERA

    Full text link
    Striking events with isolated charged leptons, large missing transverse momentum and large transverse momentum of the hadronic final state were observed at the electron proton collider HERA in a data sample corresponding to a luminosity of about 130 pb-1. The H1 collaboration observed 11 events with isolated electrons or muons and with transverse momentum above 25 GeV. Only 3.4+-0.6 events were expected from Standard Model (SM) processes. Six of these events have a transverse momentum of greater than 40 GeV, while 1.3+-0.3 events were expected. The ZEUS collaboration observed good agreement with the SM. However, ZEUS found two events with a similar event topology, but tau leptons instead of electrons or muons in the final state. Only 0.2+-0.05 events were expected from SM processes. For various hypotheses the compatibility of the experimental results was investigated with respect to the SM and with respect to possible explanations beyond the SM. Prospects for the high-luminosity HERA-II data taking period are given

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγ→H1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+K−K^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρω→a\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+K−K^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    Anomalously interacting new extra vector bosons and their first LHC constraints

    Full text link
    In this review phenomenological consequences of the Standard Model extension by means of new spin-1 chiral fields with the internal quantum numbers of the electroweak Higgs doublets are summarized. The prospects for resonance production and detection of the chiral vector Z∗Z^* and W∗±W^{*\pm} bosons at the LHC energies are considered. The Z∗Z^* boson can be observed as a Breit-Wigner resonance peak in the invariant dilepton mass distributions in the same way as the well-known extra gauge Zâ€ČZ' bosons. However, the Z∗Z^* bosons have unique signatures in transverse momentum, angular and pseudorapidity distributions of the final leptons, which allow one to distinguish them from other heavy neutral resonances. In 2010, with 40 pb−1^{-1} of the LHC proton-proton data at the energy 7 TeV, the ATLAS detector was used to search for narrow resonances in the invariant mass spectrum of e+e−e^+e^- and ÎŒ+Ό−\mu^+\mu^- final states and high-mass charged states decaying to a charged lepton and a neutrino. No statistically significant excess above the Standard Model expectation was observed. The exclusion mass limits of 1.15 TeV/c2/c^2 and 1.35 TeV/c2/c^2 were obtained for the chiral neutral Z∗Z^* and charged W∗W^* bosons, respectively. These are the first direct limits on the W∗W^* and Z∗Z^* boson production. For almost all currently considered exotic models the relevant signal is expected in the central dijet rapidity region. On the contrary, the chiral bosons do not contribute to this region but produce an excess of dijet events far away from it. For these bosons the appropriate kinematic restrictions lead to a dip in the centrality ratio distribution over the dijet invariant mass instead of a bump expected in the most exotic models.Comment: 24 pages, 34 figure, based on talk given by V.A.Bednyakov at 15th Lomonosov conference, 22.08.201

    Suivi temps réel de personnes dans des séquences d'images couleur

    Get PDF
    Nous proposons dans cet article un algorithme temps rĂ©el de suivi de personnes, il est entiĂšrement non supervisĂ©, il ne nĂ©cessite aucune initialisation ni sur les modĂšles de pistes, ni sur leur nombre qui peut Ă©voluer dans le temps. Il permet de gĂ©rer divers problĂšmes tels que les occlusions et les sous ou sur segmentations. La premiĂšre Ă©tape du processus consiste Ă  dĂ©tecter les zones en mouvement. Les diffĂ©rentes rĂ©gions ainsi obtenues seront affectĂ©es Ă  des trajectoires en utilisant le concept de pistes Ă©lĂ©mentaires. Ces derniĂšres nous permettent d'une part de faciliter le suivi et d'autre part de dĂ©tecter les sorties d'occlusions en introduisant des ensembles cohĂ©rents de rĂ©gions sur lesquels des modĂšles cinĂ©matiques, de forme ou de couleur pourront ĂȘtre dĂ©finis. . Des rĂ©sultats significatifs seront prĂ©sentĂ©s sur des sĂ©quences rĂ©elles avec vĂ©ritĂ© de terrain

    Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data

    Get PDF
    Event Shape Data from e+e−e^+e^- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling αS\alpha_S. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is αS(MZ)\alpha_S(M_Z)= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is αS\alpha_S= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of αS\alpha_S agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version with JADE author lis
    • 

    corecore