541 research outputs found
Arms lift in a case of pseudoxanthoma elasticum
Pseudoxanthoma elasticum (PXE) is a rare hereditary disorder of elastin fibers, characterized by yellowish coalescent papules in flexural surfaces with abnormally lax and corrugated skin. It can be associated to systemic manifestations mostly regarding eyes and vessels. Aesthetic surgery of cutaneous hyperlaxity was described in the international literature only in few cases, mostly as neck lift. A 40-year-old woman presented with cutaneous signs of PXE, demanding brachioplasty. Results after a nine-month followup are quite satisfying, and no signs of local recurrence or scar alterations are present
Subcutaneous adipose tissue classification
The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT) can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT), structural WAT (sWAT) and fibrous WAT (fWAT). dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical). In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for regenerative procedures based on autologous adipose tissues
The trochanteric fat pad
Technological developments based on the use of autologous white adipose tissue (WAT) attracted attention to minor fat depots as possible sources of adipose tissue. In plastic surgery, the trochanteric fatty pad is one of the most used WAT depots for its location and organoleptic characteristics that make it particularly suitable for reconstructive procedures. Despite its wide use in clinic, the structure of this depot has never been studied in detail and it is not known if structural differences exist among trochanteric fat and other subcutaneous WAT depots. The present study was performed on trochanteric fat pad with the aim to clarify the morphology of its adipocytes, stroma and microcirculation, with particular reference to the stem niches. Histological and ultrastructural studies showed that the main peculiar feature of the trochanteric fat concerns its stromal component, which appears less dense than in the other subcutaneous WATs studied. The intra-parenchymal collagen stroma is poor and the extracellular compartment shows large spaces, filled with electron-light material, in which isolated collagen bundles are present. The adipocytes are wrapped in weak and easily detachable collagen baskets. These connective sheaths are very thin compared to the sheaths in other subcutaneous WAT depots. The capillaries are covered by large, long and thin elements surrounded by an external lamina; these perivascular cells are poor in organelles and mainly contain poly-ribosomes. In conclusion, when compared to other WAT deposits, the trochanteric fatty pad shows structural peculiarities in its stroma and microcirculation suggesting a high regenerative potential. Resistance, dissociability, microvascular weft and high regenerative potential make the trochanteric fatty pad a privileged source for harvesting in autologous WAT-based regenerative procedures
Drosophila Helical factor is an inducible protein acting as an immune-regulated cytokine in S2 cells.
The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokine
Overstocking dairy cows during the dry period affects dehydroepiandrosterone and cortisol secretion
Stressful situations trigger several changes such as the secretion of cortisol and dehydroepiandrosterone (DHEA) from the adrenal cortex, in response to ACTH. The aim of this study was to verify whether overstocking during the dry period (from 21 \ub1 3 d to the expected calving until calving) affects DHEA and cortisol secretion and behavior in Holstein Friesian cows. Twenty-eight cows were randomly divided into 2 groups (14 animals each), balanced for the number of lactations, body condition score, and expected date of calving. Cows in the far-off phase of the dry period (from 60 to 21 d before the expected calving date) were housed together in a bedded pack. Then, animals from 21 \ub1 3 d before the expected calving until calving were housed in pens with the same size but under different crowding conditions due to the introduction of heifers (interference animals) into the pen. The control condition (CTR) had 2 animals per pen with 12.0 m2 each, whereas the overstocked condition (OS) had 3 interference animals in the same pen with 4.8 m2 for each animal. On d 1230 \ub1 3, 1221 \ub1 3, 1215 \ub1 3, 1210 \ub1 3, and 125 \ub1 3 before and 10, 20, and 30 after calving, blood samples were collected from each cow for the determination of plasma DHEA and cortisol concentrations by RIA. Rumination time (min/d), activity (steps/h), lying time (min/d), and lying bouts (bouts/d) were individually recorded daily. In both groups, DHEA increased before calving and the concentration declined rapidly after parturition. Overstocking significantly increased DHEA concentration compared with the CTR group at d 1210 (1.79 \ub1 0.09 vs. 1.24 \ub1 0.14 pmol/mL), whereas an increase of cortisol was observed at d 1215 (3.64 \ub1 0.52 vs. 1.64 \ub1 0.46 ng/mL). The OS group showed significantly higher activity (steps/h) compared with the CTR group. Daily lying bouts tended to be higher for the OS group compared with CTR group in the first week of treatment. The overall results of this study documented that overstocking during the dry period was associated with a short-term changes in DHEA and cortisol but these hormonal modifications did not influence cow behavior
MR imaging diagnosis of diencephalic-mesencephalic junction dysplasia in fetuses with developmental ventriculomegaly
SUMMARY: Diencephalic-mesencephalic junction dysplasia is a rare malformation characterized by a poorly defined junction between the diencephalon and the mesencephalon, associated with a characteristic butterfly-like contour of the midbrain (butterfly sign). This condition may be variably associated with other brain malformations, including callosal abnormalities and supratentorial ventricular dilation, and is a potential cause of developmental hydrocephalus. Here, we have reported 13 fetuses with second-trimester obstructive ventriculomegaly and MR features of diencephalic-mesencephalic junction dysplasia, correlating the fetal imaging with available pathology and/or postnatal data. The butterfly sign can be clearly detected on axial images on fetal MR imaging, thus allowing for the prenatal diagnosis of diencephalic-mesencephalic junction dysplasia, with possible implications for the surgical management of hydrocephalus and parental counseling
- …