835 research outputs found

    Volumetric evaluation of fat in the renal sinus in normal subjects using stereological method on computed tomography images and its relationship with body composition

    Get PDF
    Background: The aim of the study was: to describe a simple, accurate and practical technique for estimating the volume of adipose tissue within the renal sinus (RS) using stereological method on computed tomography (CT) images; to establish a population database for volume of fat within the RS from 21 to 80 years of age; to investigate the effect of age, gender, body mass index (BMI) and abdominal diameters on RS fat volume in normal subjects.Materials and methods: We retrospectively reviewed abdominal CT examinations of 240 patients without renal pathology between the ages of 21 and 80 years. There were 6 groups of patients, with 40 patients for each decade.Results: RS fat volumes in the left and right kidney were 5.70 ± 2.87 cm3 and 4.15 ± 2.39 cm3, respectively, in males and 3.51 ± 2.67 cm3 and 2.49 ± 2.16 cm3, respectively, in females. RS fat volume and age were positively correlated for both kidneys (left: r = 0.46; right: r = 0.44; p < 0.001, both), though it appeared to decline after age 70.Conclusions: Quantitative data may allow clinicians to better estimate the age-related RS fat volume changes and help them in decision making

    Template-Directed Synthesis of Silica Nanotubes for Explosive Detection

    Get PDF
    Cataloged from PDF version of article.Fluorescent porous organic-inorganic thin films are of interest of explosive detection because of their vapor phase fluorescence quenching property. In this work, we synthesized fluorescent silica nanotubes using a biomineralization process through self-assembled peptidic nanostructures. We designed and synthesized an amyloid-like peptide self-assembling into nanofibers to be used as a template for silica nanotube formation. The amine groups on the peptide nanofibrous system were used for nucleation of silica nanostructures. Silica nanotubes were used to prepare highly porous surfaces, and they were doped with a fluorescent dye by physical adsorption for explosive sensing. These porous surfaces exhibited fast, sensitive, and highly selective fluorescence quenching against nitro-explosive vapors. The materials developed in this work have vast potential in sensing applications due to enhanced surface area. © 2011 American Chemical Society

    Deformation analysis with Total Least Squares

    Get PDF
    Deformation analysis is one of the main research fields in geodesy. Deformation analysis process comprises measurement and analysis phases. Measurements can be collected using several techniques. The output of the evaluation of the measurements is mainly point positions. In the deformation analysis phase, the coordinate changes in the point positions are investigated. Several models or approaches can be employed for the analysis. One approach is based on a Helmert or similarity coordinate transformation where the displacements and the respective covariance matrix are transformed into a unique datum. Traditionally a Least Squares (LS) technique is used for the transformation procedure. Another approach that could be introduced as an alternative methodology is the Total Least Squares (TLS) that is considerably a new approach in geodetic applications. In this study, in order to determine point displacements, 3-D coordinate transformations based on the Helmert transformation model were carried out individually by the Least Squares (LS) and the Total Least Squares (TLS), respectively. The data used in this study was collected by GPS technique in a landslide area located nearby Istanbul. The results obtained from these two approaches have been compared

    Distribution of mast cells in lung tissues of rats exposed to biomass smoke

    Get PDF
    This study was designed to evaluate the distribution of mast cells in the lung tissues of rats exposed to biomass  smoke. Fifty six female Wistar albino adult rats were used. They were divided into two experimental groups  (control and biomass smoke-treated), each containing 28 animals. Control rats were not exposed to the  biomass smoke at any time during the experiment. Rats in the treatment group were exposed daily (one hour)  to biomass smoke for 3, 6 or 9 months. Lung tissues samples were obtained under deep anesthesia from the  randomly selected 7 animals in both groups. Lung tissues were fixed in Mota’s fixative (BLA) for 24 h and  embedded in paraffin. Sections of 6 μm thickness were cut and stained with 0.5% toluidine blue in 0.5 N  hydrochloric acid at pH 0.5 for 30 min. The numbers of mast cell in lung tissues of the animals exposed to  the biomass for 6 or 9 months were significantly (P<0.05) higher than controls. This study showed that long  term exposure to biomass smoke was associated with the increased number of mast cells in the lung.

    Self-Assembled Peptide Nanofiber Templated One-Dimensional Gold Nanostructures Exhibiting Resistive Switching

    Get PDF
    Cataloged from PDF version of article.An amyloid-like peptide molecule self-assembling into one-dimensional nanofiber structure in ethanol was designed and synthesized with functional groups that can bind to gold ions. The peptide nanofibers were used as templates for nucleation and growth of one-dimensional gold nanostructures in the presence of ascorbic acid as reducing agent. We performed multistep seed-mediated synthesis of gold nanoparticles by changing peptide/gold precursor and peptide/reducing agent ratios. Gold nanostructures with a wide range of morphologies such as smooth nanowires, noodle-like one-dimensional nanostructures, and uniform aggregates of spherical nanoparticles were synthesized by use of an environmentally friendly synthesis method. Nanoscale electrical properties of gold-peptide nanofibers were investigated using atomic force microscopy. Bias dependent current (IV) measurements on thin films of gold-peptide nanofiber hybrid revealed tunneling dominated transport and resistive switching. Gold-peptide nanofiber composite nanostructures can provide insight into electrical conduction in biomolecular/inorganic composites, highlighting their potential applications in electronics and optics. © 2012 American Chemical Society

    Grating coupler integrated photodiodes for plasmon resonance based sensing

    Get PDF
    Cataloged from PDF version of article.In this work, we demonstrate an integrated sensor combining a grating-coupled plasmon resonance surface with a planar photodiode. Plasmon enhanced transmission is employed as a sensitive refractive index (RI) sensing mechanism. Enhanced transmission of light is monitored via the integrated photodiode by tuning the angle of incidence of a collimated beam near the sharp plasmon resonance condition. Slight changes of the effective refractive index (RI) shift the resonance angle, resulting in a change in the photocurrent. Owing to the planar sensing mechanism, the design permits a high areal density of sensing spots. In the design, absence of holes that facilitate resonant transmission of light, allows an easy-to-implement fabrication procedure and relative insensitivity to fabrication errors. Theoretical and experimental results agree well. An equivalent long-term RI noise of 6.3 x 10(-6) RIU/root Hz is obtained by using an 8 mW He-Ne laser, compared to a shot-noise limited theoretical sensitivity of 5.61 x 10(-9) RIU/root Hz. The device features full benefits of grating-coupled plasmon resonance, such as enhancement of sensitivity for non-zero azimuthal angle of incidence. Further sensitivity enhancement using balanced detection and optimal plasmon coupling conditions are discussed

    Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials

    Get PDF
    Cataloged from PDF version of article.One-dimensional titania nanostructures can serve as a support for light absorbing molecules and result in an improvement in the short circuit current (Jsc) and open circuit voltage (Voc) as a nanostructured and high-surface-area material in dye-sensitized solar cells. Here, self-assembled amyloid-like peptide nanofibers were exploited as an organic template for the growth of one-dimensional titania nanostructures. Nanostructured titania layers were utilized as anodic materials in dye sensitized solar cells (DSSCs). The photovoltaic performance of the DSSC devices was assessed and an enhancement in the overall cell performance compared to unstructured titania was observed. © 2013 The Royal Society of Chemistry
    corecore