261 research outputs found

    Strong Pinning and Plastic Deformations of the Vortex Lattice

    Full text link
    We investigate numerically the dynamically generated plastic deformations of a 3D vortex lattice (VL) driven through a disorder potential with isolated, strong pinning centers (point-like or extended along the field direction). We find that the VL exhibits a very peculiar dynamical behavior in the plastic flow regime, in particular, topological excitations consisting of three or four entangled vortices are formed. We determine the critical current density jcj_c and the activation energy for depinning UcU_c in the presence of a finite density of strong pinning centers.Comment: 12 pages, TeX type, Postscript figure

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Dynamics of Flux Creep in Underdoped Single Crystals of Y_1-xPr_xBa_2Cu_3O_7-d

    Full text link
    Transport as well as magnetic relaxation properties of the mixed state were studied on strongly underdoped Y_1-xPr_xBa_2Cu_3O_7-d crystals. We observed two correlated phenomena - a coupling transition and a transition to quantum creep. The distribution of transport current below the coupling transition is highly nonuniform, which facilitates quantum creep. We speculate that in the mixed state below the coupling transition, where dissipation is nonohmic, the current distribution may be unstable with respect to self-channeling resulting in the formation of very thin current-carrying layers.Comment: 11 pages, 9 figures, Submitted to Phys. Rev.

    Plasticity and memory effects in the vortex solid phase of twinned YBa2Cu3O7 single crystals

    Full text link
    We report on marked memory effects in the vortex system of twinned YBa2Cu3O7 single crystals observed in ac susceptibility measurements. We show that the vortex system can be trapped in different metastable states with variable degree of order arising in response to different system histories. The pressure exerted by the oscillating ac field assists the vortex system in ordering, locally reducing the critical current density in the penetrated outer zone of the sample. The robustness of the ordered and disordered states together with the spatial profile of the critical current density lead to the observed memory effects

    Pinning-induced transition to disordered vortex phase in layered superconductors

    Full text link
    Destruction of the vortex lattice by random point pinning is considered as a mechanism of the ``second peak'' transition observed experimentally in weakly coupled layered high temperature superconductors. The transition field separating the topologically ordered quasilattice from the amorphous vortex configuration is strongly influenced by the layered structure and by the nonlocal nature of the vortex tilt energy due to the magnetic interlayer coupling. We found three different regimes of transition depending on the relative strength of the Josephson and magnetic couplings. The regimes can be distinguished by the dependence of the transition fieldComment: 8 pages, 3 Postscript figures. Accepted to Phys. Rev.B. (regular article

    Self-organization of vortices in type-II superconductors during magnetic relaxation

    Full text link
    We revise the applicability of the theory of self-organized criticality (SOC) to the process of magnetic relaxation in type-II superconductors. The driving parameter of self-organization of vortices is the energy barrier for flux creep and not the current density. The power spectrum of the magnetic noise due to vortex avalanches is calculated and is predicted to vary with time during relaxation.Comment: RevTex, 5 pages, 2 PS figures. Accepted in Phys. Rev.

    Hysteretic behavior of the vortex lattice at the onset of the second peak for HgBa2_2CuO4+δ_{4+\delta} superconductor

    Full text link
    By means of local Hall probe ac and dc permeability measurements we investigated the phase diagram of vortex matter for the HgBa2_2CuO4+δ_{4+\delta } superconductor in the regime near the critical temperature. The second peak line, HspH_{\rm sp}, in contrast to what is usually assumed, doesn't terminate at the critical temperature. Our local ac permeability measurements revealed pronounced hysteretic behavior and thermomagnetic history effects near the onset of the second peak, giving evidence for a phase transition of vortex matter from an ordered qausilattice state to a disordered glass

    Mixed origin of neovascularization of human endometrial grafts in immunodeficient mouse models

    Full text link
    peer reviewedBACKGROUND: In vivo mouse models have been developed to study the physiology of normal and pathologic endometrium. Although angiogenesis is known to play an important role in endometrial physiology and pathology, the origin of neovasculature in xenografts remains controversial. The aim of this study was to assess the origin of the neovasculature of endometrial grafts in different mouse models. METHODS: Human proliferative endometrium (n = 19 women) was grafted s.c. in two immunodeficient mouse strains: nude (n = 8) and severely compromised immunodeficient (SCID; n = 20). Mice were also treated with estradiol, progesterone or levonorgestrel. Fluorescence in-situ hybridization using a centromeric human chromosome X probe, immunohistochemistry (von Willebrand factor and collagen IV) and lectin perfusion were performed to identify the origin of the vessels. RESULTS: More than 90% of vessels within xenografts were of human origin 4 weeks after implantation. Some vessels (9.67 +/- 2.01%) were successively stained by human or mouse specific markers, suggesting the presence of chimeric vessels exhibiting a succession of human and murine portions. No difference in staining was observed between the two strains of mouse or different hormone treatments. Furthermore, erythrocytes were found inside human vessels, confirming their functionality. CONCLUSION: This article shows that human endometrial grafts retain their own vessels, which connect to the murine vasculature coming from the host tissue and become functional

    Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer

    Get PDF
    Angiogenesis is critical for the growth and metastasis of endometrial cancer and is therefore an important therapeutic target. Vascular endothelial growth factor-A (VEGF-A) is a key molecule in angiogenesis, but the identification of related molecules and the angiopoietins suggests a more complex picture. We investigated the presence of transcripts for VEGF-A, VEGF-B, VEGF-C, VEGF-D, Angiopoietin-1 and Angiopoietin-2 in benign endometrium, atypical complex hyperplasia (ACH) and endometrioid endometrial carcinoma using in situ hybridisation. We confirmed the presence of VEGF-A mRNA in the epithelial cells of cancers examined (13 out of 13), but not in benign endometrium or ACH. We also demonstrate, using quantitative polymerase chain reaction, that levels of VEGF-B mRNA are significantly lower in endometrial cancer than benign endometrium. We conclude that loss of VEGF-B may contribute to the development of endometrial carcinoma by modulating availability of receptors for VEGF-A

    Functional immunomics: Microarray analysis of IgG autoantibody repertoires predicts the future response of NOD mice to an inducer of accelerated diabetes

    Full text link
    One's present repertoire of antibodies encodes the history of one's past immunological experience. Can the present autoantibody repertoire be consulted to predict resistance or susceptibility to the future development of an autoimmune disease? Here we developed an antigen microarray chip and used bioinformatic analysis to study a model of type 1 diabetes developing in non-obese diabetic (NOD) male mice in which the disease was accelerated and synchronized by exposing the mice to cyclophosphamide at 4 weeks of age. We obtained sera from 19 individual mice, treated the mice to induce cyclophosphamide-accelerated diabetes (CAD), and found, as expected, that 9 mice became severely diabetic while 10 mice permanently resisted diabetes. We again obtained serum from each mouse afterCAD induction. We then analyzed the patterns of antibodies in the individualmice to 266 different antigens spotted on the antigen chip. We identified a select panel of 27 different antigens (10% of the array) that revealed a pattern of IgG antibody reactivity in the pre-CAD serathat discriminated between the mice resistant or susceptible to CAD with 100% sensitivity and 82% specificity (p=0.017). Surprisingly, the set of IgG antibodies that was informative before CAD induction did not separate the resistant and susceptible groups after the onset of CAD; new antigens became criticalfor post-CAD repertoire discrimination. Thus, at least for a model disease, present antibody repertoires can predict future disease; predictive and diagnostic repertoires can differ; and decisive information about immune system behavior can be mined by bioinformatic technology. Repertoires matter.Comment: See Advanced Publication on the PNAS website for final versio
    • …
    corecore