19 research outputs found

    Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. I. Effect of Lipopolysaccharide on Innate Immunity

    Get PDF
    The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy

    Acute BVDV infection inhibits expression of interferon-stimulated genes during pregnancy recognition in bovine endometrium

    Get PDF
    Bovine viral diarrhea virus (BVDV) can evade host detection by downregulation of interferon signaling pathways. Infection of cows with noncytopathic (ncp) BVDV can cause early embryonic mortality. Upregulation of type I interferon stimulated genes (ISGs) by blastocyst-secreted interferon tau (IFNT) is a crucial component of the maternal recognition of pregnancy (MRP) in ruminants. This study investigated the potential of acute BVDV infection to disrupt MRP by modulating endometrial ISG expression. Endometrial cells from 10 BVDV-free cows were cultured and treated with 0 or 100 ng/ml IFNT for 24 h in the absence or presence of ncpBVDV infection to yield four treatment groups: CONT, ncpBVDV, IFNT, or ncpBVDV+IFNT. ncpBVDV infection alone only upregulated TRIM56, but reduced mRNA expression of ISG15, MX2, BST2, and the proinflammatory cytokine IL1B. As anticipated, IFNT treatment alone significantly increased expression of all 17 ISGs tested. In contrast to the limited effect of ncpBVDV alone, the virus markedly inhibited IFNT-stimulated expression of 15 ISGs tested (ISG15, HERC5, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, MX1, MX2, RSAD2, OAS1Y, SAMD9, GBP4, and PLAC8), together with ISG15 secreted protein. Only TRIM56 and IFI27 expression was unaltered. IL1B expression was reduced by the combined treatment. These results indicate that acute ncpBVDV infection may decrease uterine immunity and lead to MRP failure through inhibition of IFNT-stimulated endometrial ISG production. This in turn could reduce fertility and predispose cows to uterine disease, while evasion of the normal uterine immune response by ncpBVDV may contribute to maintenance and spreading of this economically important disease

    Global Transcriptomic Profiling of Bovine Endometrial Immune Response In Vitro. II. Effect of Bovine Viral Diarrhea Virus on the Endometrial Response to Lipopolysaccharide

    Get PDF
    Infection with noncytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS). Primary cultures of mixed epithelial and stromal cells were divided into four treatment groups (control [CONT], BVDV, CONT+LPS, and BVDV+LPS) and infected with ncpBVDV for 4 days followed by treatment with LPS for 6 h. Whole-transcriptomic gene expression was measured followed by Ingenuity Pathway Analysis. Differential expression of 184 genes was found between CONT and BVDV treatments, showing interplay between induction and inhibition of responses. Up-regulation of TLR3, complement, and chemotactic and TRIM factors by ncpBVDV all suggested an ongoing immune response to viral infection. Down-regulation of inflammatory cytokines, chemokines, CXCR4, and serine proteinase inhibitors suggested mechanisms by which ncpBVDV may simultaneously counter the host response. Comparison between BVDV+LPS and CONT+LPS treatments showed 218 differentially expressed genes. Canonical pathway analysis identified the key importance of interferon signaling. Top down-regulated genes were RSAD2, ISG15, BST2, MX2, OAS1, USP18, IFIT3, IFI27, SAMD9, IFIT1, and DDX58, whereas TRIM56, C3, and OLFML1 were most up-regulated. Many of these genes are also regulated by IFNT during maternal recognition of pregnancy. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV, including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration, and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition, thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility

    BVDV alters uterine prostaglandin production during pregnancy recognition in cows

    Get PDF
    Embryonic mortality in cows is at least in part caused by failure of pregnancy recognition (PR). Evidence has shown that bovine viral diarrhoea virus (BVDV) infection can disrupt pregnancy. Prostaglandins (PG) play important roles in many reproductive processes, such as implantation. The aim of this study was to investigate the effect of BVDV infection on uterine PG production and PR using an in vitro PR model. Bovine uterine endometrial cells isolated from ten BVDV-free cows were cultured and treated with 0 or 100ng/mL interferon-τ (IFNT) in the absence or presence of non-cytopathic BVDV (ncpBVDV). PGF2α and PGE2 concentrations in the spent medium were measured using radioimmunoassays, and in the treated cells expression of the genes associated with PG production and signalling was quantified using qPCR. The results showed that the IFNT challenge significantly stimulated PTGS1 and PTGER3 mRNA expression and PGE2 production; however, these stimulatory effects were neutralised in the presence of ncpBVDV infection. ncpBVDV infection significantly increased PTGS1 and mPGES1 mRNA expression and decreased AKR1B1 expression, leading to increased PGE2 and decreased PGF2α concentrations and an increased PGE2:PGF2α ratio. The other tested genes, including PGR, ESR1, OXTR, PTGS2, PTGER2 and PTGFR, were not significantly altered by IFNT, ncpBVDV or their combination. Our study suggests that BVDV infection may impair PR by (1) inhibiting the effect of IFNT on uterine PG production and (2) inducing an endocrine switch of PG production from PGF2α to PGE2 to decrease uterine immunity, thereby predisposing the animals to uterine disease

    Optimizing Electrocardiogram Interpretation and Catheterization Laboratory Activation in ST-Segment Elevation Myocardial Infarct

    Get PDF
    Background: To achieve the 90-minute reperfusion goal in ST-segment elevation myocardial infarction (STEMI) care, providers must diagnose STEMIs from electrocardiograms (ECGs) obtained upon emergency room arrival and appropriately activate the catheterization lab. To enhance early STEMI care, we sought to improve medical student STEMI recognition and diagnostic accuracy with a teaching module we designed and developed. Methods: Through a literature review, we identified evidenced-based criteria for classic STEMI patterns, STEMI-equivalents with non-classic STEMI patterns including hyperacute T-waves, STEMI with existing left bundle branch block (LBBB) and Wellens’ syndrome and non-ischemic STEMI-mimics such as known LBBB, pericarditis, ventricular aneurysm, pulmonary embolism, left ventricular hypertrophy, hyperkalemia, Brugada syndrome, early repolarization and takotsubo cardiomyopathy. We reviewed cases from George Washington University Hospital and compiled the 24 best ECGs with clinical information, diagnostic ECG criteria and imaging including cardiac catheterization, echocardiography and computed tomography into the teaching module. We then conducted a prospective education validation trial with fourth-year medical students. We administered pre- and post-tests comprised of exemplary cases of STEMIs, STEMI-equivalents and STEMI-mimics from our case review. Participants studied the module for two weeks and received a didactic module-based lecture prior to the post-test. Students served as their own control. The primary end point was STEMI recognition, measured by appropriate catheterization lab activation. The secondary endpoint was correct ECG diagnosis. Paired t-tests were used to compare pre- and post-training scores. Results: Appropriate catheterization lab activation mean score was 61% (SD 0.14) and improved to 76% on post-test (SD 0.18, p Conclusions: The module significantly improved student STEMI recognition, appropriate catheterization lab activation and diagnostic accuracy

    Song Bu Li Decoction, a Traditional Uyghur Medicine, Protects Cell Death by Regulation of Oxidative Stress and Differentiation in Cultured PC12 Cells

    Get PDF
    Song Bu Li decoction (SBL) is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia) and heart disorders (arrhythmia and palpitation). Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS) formation. The transcriptional activity of antioxidant response element (ARE), as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF-) induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress

    The Volatile Oil of Nardostachyos Radix et Rhizoma Induces Endothelial Nitric Oxide Synthase Activity in HUVEC Cells

    No full text
    <div><p>Nardostahyos Radix et Rhizoma (NRR; the root and rhizome of <i>Nardostachys jatamansi</i> DC.) is a widely used medicinal herb. Historically, NRR is being used for the treatment of cardiovascular and neurological diseases. To search for active ingredients of NRR, we investigated the vascular benefit of NRR volatile oil in (i) the vasodilation in rat aorta ring, and (ii) the release of nitric oxide (NO) and the phosphorylation of endothelial NO synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVECs). By measuring the fluorescence signal in cultures, application of NRR volatile oil resulted in a rapid activation of NO release as well as the phosphorylation of eNOS: both inductions were markedly reduced by L-NAME. In parallel, the phosphorylation level of Akt kinase was markedly increased by the oil treatment, which was partially attenuated by PI3K/Akt inhibitor LY294002. This inhibitor also blocked the NRR-induced NO production and eNOS phosphorylation. In HUVECs, application of NRR volatile oil elevated the intracellular Ca<sup>2+</sup> level, and BAPTA-AM, a Ca<sup>2+</sup> chelator, reduced the Ca<sup>2+</sup> surge: the blockage were also applied to NRR-induced eNOS phosphorylation and NO production. These findings suggested the volatile oil of NRR was the major ingredient in triggering the vascular dilatation, and which was mediated via the NO production.</p></div
    corecore