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ABSTRACT  

Bovine viral diarrhoea virus (BVDV) can evade host detection by down-regulation of interferon 

signalling pathways. Infection of cows with non-cytopathic (ncp) BVDV can cause early embryonic 

mortality. Upregulation of type I interferon stimulated genes (ISGs) by blastocyst-secreted interferon 

tau (IFNT) is a crucial component of the maternal recognition of pregnancy (MRP) in ruminants. This 

study investigated the potential of acute BVDV infection to disrupt MRP by modulating endometrial 

ISG expression. Endometrial cells from 10 BVDV-free cows were cultured and treated with 0 or 100 

ng/ml IFNT for 24 h in the absence or presence of ncpBVDV infection to yield 4 treatment groups: 

CONT, ncpBVDV, IFNT or ncpBVDV+IFNT. ncpBVDV infection alone only up-regulated TRIM56, 

but reduced mRNA expression of ISG15, MX2, BST2 and the pro-inflammatory cytokine IL1B. As 

anticipated, IFNT treatment alone significantly increased expression of all 17 ISGs tested. In contrast 

to the limited effect of ncpBVDV alone, the virus markedly inhibited IFNT-stimulated expression of 

15 ISGs tested (ISG15, HERC5, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, MX1, MX2, RSAD2, 

OAS1Y, SAMD9, GBP4 and PLAC8), together with ISG15 secreted protein. Only TRIM56 and IFI27 

expression was unaltered. IL1B expression was reduced by the combined treatment. These results 

indicate that acute ncpBVDV infection may decrease uterine immunity and lead to MRP failure 

through inhibition of IFNT-stimulated endometrial ISG production. This in turn could reduce fertility 

and predispose cows to uterine disease, while evasion of the normal uterine immune response by 

ncpBVDV may contribute to maintenance and spreading of this economically important disease.   

 

INTRODUCTION 

Early embryonic death is a major cause of poor reproductive performance in cattle, with most 

losses occurring before day 16 of pregnancy [1]. There is strong evidence to suggest that infection 

with bovine viral diarrhoea virus (BVDV) is one of many potential causes of pregnancy failure. 

BVDV is a single-stranded (ss)RNA virus in the genus Pestivirus. It causes a significant disease of 

cattle which is endemic in the majority of countries worldwide, leading to major economic losses [2]. 
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BVDV is able to replicate in many types of tissues including the reproductive tract [3, 4]. 

Reproductive losses are one of the consequences of this disease: if cows develop an acute infection 

with non-cytopathic (ncp) BVDV shortly before or during the first six months of gestation then the 

pregnancy can be adversely affected [2, 3]. This includes early embryonic development as conception 

rates fell by up to 44% following experimental infections either nine days before or four days after 

insemination [5].  The review by Fray et al. [2] cited many similar results which have been reported 

following ncpBVDV infection in the field, in spite of the occasional report to the contrary. Acutely 

infected animals are usually able to eliminate the virus within 10-14 days post infection [6]. There is, 

however, evidence that transmissible virus can persist for much longer periods in some animals which 

have apparently recovered [7]. Bulls can continue to shed virus into semen for some time after initial 

BVDV infection due to continued viral replication in the seminal vesicles and prostate gland [8], but 

there is little information available regarding the survival time of BVDV in the female reproductive 

tract. Bielanski et al. [9, 10] infected heifers with BVDV by i.v. inoculation or by breeding to a 

persistently infected (PI) bull and detected virus in the uterus between 7-16 days later, while 

ncpBVDV was isolated from the uterocervical mucus of a heifer 24 days after initial infection [5]. 

Kirkland et al. isolated BVDV from degenerate fetuses of cows slaughtered approximately 38 days 

after exposure to BVDV [11]. Firat et al. [12] found BVDV antigen in macrophage-like cells of the 

endometrium in 23% of 65 cows examined in a slaughterhouse survey, but the previous history of 

these animals was unknown.  

BVDV is known to use a variety of strategies to inhibit host defence mechanisms [13-15]. The 

virus is detected by TLR3 or TLR7/8 located in intracellular compartments such as endosomes and 

the endoplasmic reticulum or by the pattern recognition receptor DDX58 in the cytoplasm which 

detects ssRNA. The downstream signalling pathway from the TLR involves transcription interferon 

regulatory factor 3 or 7 (IRF3, IRF7) which usually act to up-regulate transcription of type 1 IFN. The 

BVDV protein N
pro

 acts to target IRF3 towards proteasomal degradation, so inhibiting downstream 

signalling and preventing the rise in IFN. GBP4, an IFN-inducible GTPase, can also inhibit this 
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pathway by disrupting interactions between TRAF6 and IRF7 while leaving NFKB signalling intact 

[15-18]. 

We showed previously that infection of cultured bovine endometrial cells with a non-cytopathic 

strain of BVDV inhibited many of the immune pathways normally activated in response to a 

challenge with bacterial lipopolysaccharide (LPS), including downregulation of many interferon 

stimulated genes (ISGs) [19]. This observation is pertinent as pregnancy recognition in cows is 

initiated by interferon tau (IFNT), which is a Type I interferon. The conceptus trophectoderm starts 

secreting IFNT into the uterine lumen on around day 8 of gestation, with production increasing 

dramatically during elongation [20, 21].   When IFNT reaches a sufficient threshold level (normally 

by day 16 of pregnancy in cows), the development of oxytocin receptors is inhibited, so preventing 

luteolysis and ensuring maintenance of the pregnancy [22-24]. Additional actions of IFNT help the 

uterine endometrium to develop a receptive environment for implantation. These include changes in 

the production and/or localization of steroid hormone receptors, cytokines, prostaglandins (PGs), 

growth hormones and their receptors and nutrient transporters (reviewed by Bazer [25]). Among over 

500 uterine endometrial genes which were significantly differentially expressed during IFNT-initiated 

maternal recognition of pregnancy (MRP) in cows, the greatest upregulation was in a group of ISGs, 

including MX2, BST2, RSAD2, ISG15, OAS1, USP18, IFI44, ISG20, SAMD9, EIF4E and IFIT2, etc. 

[22, 23, 26, 27]. The mechanisms by which these ISGs act on the endometrium to ensure MRP are not 

yet fully understood but they are likely to have crucial roles in modulation of uterine immunity, 

stromal remodelling, stimulating hyperplasia of the endometrial glands and development of the 

uterine vasculature [25, 28]. Their interruption may therefore potentially lead to pregnancy failure. 

Investigations to date have failed to determine precisely how ncpBVDV can prevent the 

establishment of a successful pregnancy. As both IFNT and BVDV alter the expression of multiple 

ISGs, we hypothesised that infection with BVDV might interfere with the normal pregnancy 

recognition signalling pathways. In support of this we demonstrated previously that acute ncpBVDV 

infection inhibited the stimulatory effect of IFNT on uterine PGE2 production [29]. It has been shown 
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previously that an increase in PGE2 production is important for MRP, both by enhancing IFNT 

production and by having direct luteotrophic actions on the corpus luteum [27, 30]. 

In the present study we therefore investigated the effect of an acute ncpBVDV infection on IFNT-

induced signalling mechanisms in bovine endometrial cells. We utilized mixed cultures of epithelial 

and stromal cells as both cell types are important in the innate immune response. The epithelium 

constitutes the first line of defence to pathogens that invade the uterus while the stroma is exposed to 

virus reaching the uterus via the circulation. Interaction between epithelium and stroma is essential for 

the  MRP in response to IFNT [19, 25, 31, 32]. Both cell types express pattern recognition receptors 

such as TLRs to enable detection of both bacteria and viruses [33]. The viral infection in our 

experimental model (Supplementary Fig. 1) was established before the IFNT treatment, in order to 

mimic the most likely in vivo situation in which a cow becomes infected before or during mating. 

While previous studies by us and others have investigated the effects of IFNT and BVDV alone this is, 

to the best of our knowledge, the first to determine how these two treatments may interact in 

regulating ISG expression. Seventeen candidate ISGs were selected. ISG15, HERC5, TRIM56 and 

USP18 are all involved in ubiquitin-like modification of target proteins through the process such as 

ISGylation [34-36]. DDX58 and IFIH1 (also known as RIG1 and MDA5 respectively) are both 

cytosolic sensors of viral RNA [16]. IFIT1, IFI27, IFIT3, MX1, MX2, RSAD2, SAMD2, GBP4, 

OASY1 and BST2 are all regulators of immunity with known antiviral activity [37]. PLAC8 is up-

regulated by IFNT in the endometrium with various potential roles described relating to immunity, 

differentiation and/or proliferation [38].  IL1B was also included. This is not an ISG but represented a 

major pro-inflammatory cytokine which is thought to participate in signalling between the conceptus 

and endometrium during MRP in cows [39]. 

 

MATERIALS AND METHODS 

All reagents and consumables were purchased from Sigma Chemical Co. (Poole, Dorset, UK) or 

VWR International (Lutterworth, Leicestershire, UK) unless otherwise stated. All culture media 
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contained 50,000 units/l penicillin and 50 mg/l streptomycin and were certified BVDV free. BVDV 

free fetal bovine serum (FBS; PAA, Somerset, UK) was used for the cell isolation and culture. This 

was carried out under sterile conditions. The cells were cultured at 37C with 5% CO2.  

 

Animals, cell isolation and culture 

The overall experimental design is summarised in Supplementary Fig. 1. The experiment was 

carried out using BVDV free bovine endometrial samples and FBS as confirmed with a PCR method 

used in our laboratory with the primer pair: forward (ATGCCCWTAGTAGGACTAGCA; position 

108-128) and reverse (TCAACTCCATGTGCCATGTAC; position 395-375) [29]. The expected 

product size is 288 bp, covering the highly conserved 5ʹ non-coding/non-structural coding regions of 

the pestivirus BVDV genome strain NADL [40]. The BVDV-positive control was prepared using the 

pT7Blue-2 blunt vector, linearized (Novagen, Cambridge, MA02139, USA). The testing system also 

included a reverse-transcription-negative control and a reference gene ACTB (see Table 1 for its 

primers).  Isolation and culture of bovine uterine endometrial cells (a mixture of primary epithelial 

and stromal cells) were carried out following the protocol established in our group [29, 31]. Briefly, 

fresh uteri from 10 mature cows in the early luteal phase of the oestrous cycle were collected at a local 

abattoir and placed on an ice during transport to the laboratory. The cycle stage was estimated by the 

presence of a newly-formed corpus haemorrhagicum in one of the ovaries. The uteri appeared healthy 

based on visual inspection at both collection and dissection. Strips of intercaruncular endometrium 

were dissected and put into Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham 

(DMEM/F12 medium) (Sigma). After the strips were chopped into 1 mm
3
 cubes using a mechanical 

tissue chopper (McIIwain Laboratory Engineering, Guilford, Surrey, UK), about 40 g of the chopped 

tissue were placed into two 50 ml sterile vials and mixed with 30 ml digestive solution containing 100 

mg bovine serum albumin (BSA, Sigma), 50 mg trypsin III (Worthington, Lakewood, NJ 08701, USA) 

and 50 mg collagenase A (Roche, Welwyn Garden City, UK) per 100 ml of Hanks’ balanced salt 

solution (HBSS; Sigma). The vials were briefly centrifuged at 100 × g and 10°C for up to 1 min to 

allow the cells to settle. The supernatant was then removed and replaced with 30 ml of the above 
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digestive solution. This significantly increased the effective concentration of the digestion and thus 

the yield of endometrial cells. After incubation for 90 min at 37°C with 5% CO2 and manual mixing 

every 30 min, the cell suspension was filtered through a 100 µm mesh into 50 ml falcon vials 

containing 10% FBS and 3 µg/ml trypsin inhibitor (Sigma) with HBSS added to 50 ml and 

centrifuged at 100 × g at 10°C for 10 min. Following two repetitions of the above washing procedures, 

the cells were suspended with the culture medium (DMEM/F12 medium with 10% FBS) and plated in 

24 well IWAKI micro plates (Scitech DIV, Asahi Techno Glass, Japan) at 2 ml per well containing 

0.5 × 10
5
 cells (day 1). Culture medium was changed every 48 h to allow the cells to grow. The 

composition of the cell population was confirmed using immunocytochemical staining validated in 

our laboratory and showed that the stromal and epithelial cells constituted about 10% and 90% 

respectively of the population on day 8 of culture [31], when IFNT challenge was carried out, with 

negligible presence of immune cells (data not shown). 

 

Infection of bovine endometrial cells with ncpBVDV 

The ncpBVDV (Pe515nc strain) was provided by the BVDV Research Group at the Royal 

Veterinary College, UK. This type 1 strain was isolated from a cow diagnosed with mucosal disease 

and virologically cloned as non-cytopathogenic virus and the consensus sequence of the E2 region 

was established [41, 42]. The virus stock was propagated in BVDV-free Madin-Darby bovine kidney 

epithelial cells to achieve a 50% tissue culture infective dose (TCID50) of 5 x 10
5
 per ml following the 

method described in detail previously [19, 31]. This propagated ncpBVDV was kept at -80C until 

use. 

The endometrial cells from 10 cows used in the present study were confirmed to be initially 

BVDV negative. Cells from each cow were taken as a batch and grown in two 24-well plates as 

described previously (day 1, see Supplementary Fig. 1). After the cells had grown for 4 days, reaching 

about 70% confluence, FBS in the culture medium was reduced to 5% (maintenance medium, MM) to 

prevent overgrowth of the cells. One plate was designated as the non-infected control and the other 
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plate for the ncpBVDV infection. These plates were subsequently maintained separately to avoid 

possible cross-contamination. To infect the cells with ncpBVDV, the wells were inoculated with 0.25 

ml of MM containing Pe515nc BVDV at a multiplicity of infection (MOI) of 0.1 for 3 h. For the cells 

designated as the non-infected controls, 0.25 ml MM was added to each well following the above 

procedures. The volume in all wells was made up to 1 ml with MM and the medium was changed 

after two days. Details of how the treatment times and doses for ncpBVDV infection were optimized 

have been described previously [19, 31]. The infection of the endometrial cells with ncpBVDV was 

confirmed using both the PCR method described above with the extracted RNA and an indirect 

enzyme (alkaline phosphatase) immunostaining procedure as described previously [19, 29].  

 

Treatment of bovine endometrial cells with IFNT 

IFNT (recombinant ovine IFNT, Cell Sciences, Canton, USA) was prepared in MM at 100 ng/ml. 

Four days after the ncpBVDV infection (day 8 of culture) 1 ml of this IFNT enriched medium was 

added to the designated wells and the incubation continued for a further 24 h. The same procedure, 

but with 1 ml MM only, was performed for the other cells. The cells from each of the 10 replicate 

cows therefore included 4 treatment groups: Control (CONT), ncpBVDV, IFNT and 

IFNT+ncpBVDV. The treated cells were used for total RNA extraction (on day 9). The cell viability 

after exposure to the infection and treatment was also examined in a separate experiment with a 

CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega) following the supplied 

protocol as described previously [31]. 

 

ISG15 protein measurement 

The culture medium was collected 24 h following IFNT challenge and stored at -20 
o
C. 

Concentrations of ISG15 protein in the medium were quantified using an enzyme-linked 

immunosorbent assay (ELISA) (Insight Biotechnology, Middlesex, UK) following the supplier’s 

protocol.  
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RNA extraction 

Total RNA in the treated cells was extracted using RNeasy Mini Kits (Qiagen, Manchester, UK) 

following the supplier’s protocol. Each treatment comprised 6 duplicated wells in each plate and these 

were pooled for total RNA extraction (one pooled RNA sample for each of four treatments in each 

cow). The concentrations and purity of RNA were measured with a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies Inc, Wilminton, USA). The RNA was aliquoted as 1 

ug/tube in 0.2 ml PCR tubes and stored at -80C until reverse transcription (RT).   

 

Primer design and PCR 

The primers were designed using a “Primer 3” web based programme 

(http://frodo.wi.mit.edu/primer3) with the DNA sequences obtained from GenBank at NCBI 

(http://www.ncbi.nlm.nih.gov/Database/index.html). According to the recommendation by 

PCRBiosystems (London, UK) who supplied the reagents for cDNA synthesis (RT) and real time 

PCR (qPCR), the amplicon length for most of the genes was set to 100-200 bp with the predicted 

melting temperature of around 60 C using the default Primer 3 settings. Their alignment specificity 

was checked using the Blast tool at http://www.ncbi.nlm.nih.gov/tools/primer-blast/ and an Amplify 

tool (http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx) was used to check 

the primer quality. The detailed information of the primers is given in Table 1. The primers were 

made by Eurofins MWG Operon (Ebersberg, Germany). 

One µg of total RNA was treated with DNase to eliminate potential genomic DNA contamination 

using a RQ1 RNase-Free DNase kit (Promega) and then reverse transcribed into cDNA in a 20 µl 

reaction volume using a cDNA synthesis kit supplied by PCRBiosystems following the supplier’s 

protocol. Each 20 µl reaction contained 4 µl 5 × cDNA synthesis mix, 1 µl 20 × RTase and 1 µg of 

DNase-Treated RNA sample in 15 µl PCR grade water.  RT for all samples was performed in one 

assay to minimize variation. The resulting cDNA was diluted in nuclease free water up to 100 µl to 
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achieve a concentration of 10 ng/µl and used for qPCR and conventional PCR. The conventional PCR 

for the tested genes was carried out using the G-Storm thermal cycler (G-Storm Ltd, Somerset, UK), 

Qiagen Multiple PCR kit (Qiagen) and the primers listed in Table 1 following the methods described 

previously [29]. The specificity of primers was verified using electrophoresis on a 2% (w/v) agarose 

gel. The cDNA amplicon for each gene was purified using a QIAquick PCR purification kit (Qiagen) 

and their quality and concentrations were determined with a NanoDrop ND-1000 spectrophotometer 

(NanoDrop technologies Inc., Wilminton, USA). It was stored at -80C for use in the qPCR standard 

curve and annealing temperature optimization.  

 

qPCR analysis for gene expression 

An absolute qPCR method was used to quantify the mRNA expression of all selected genes, 

including 18 target genes (BST2, MX1, MX2, RSAD2, USP18, OAS1Y, ISG15, GBP4, IFI27, IFIT1, 

IFIT3, DDX58, PLAC8, IFIH1, HERC5, TRIM56, SAMD9 and IL1B) and four potential reference 

genes (GAPDH, RPL19, ACTB and 18SrRNA) using methods reported previously [43]. A temperature 

gradient (55-65C) qPCR with 8 identical reactions was carried out to determine the annealing 

temperature which produced maximal amplicon and the amplicon-specific melting temperatures of the 

primers using a gradient function of the qPCR machine (CFX96 Real-Time System DNA, Bio-Rad 

Laboratories, CA, USA). Each reaction contained 2 ng of the DNA standard, 10 µl Sygreen Mix 

(PCRBiosystems), 0.8 µl of each 10 µM forward and reverse primer and nuclease free water added up 

to 20 µl. The standard curve contained 8 concentrations from 1 to 1 × 10
-7

 ng/ml prepared using the 

purified DNA for each gene. Each qPCR assay contained the standard curve, no template control and 

sample cDNA for a testing gene from all cows in duplicate. Each qPCR vial contained 5 µl of cDNA 

standard or samples, 10 µl Sygreen Mix (PCRBiosystems), 0.8 µl of 10µM forward primer, 0.8 µl 

reverse primer (See Table 1) and 3.4 µl nuclease free water. Reactions and data acquisition were 

carried out on CFX96 Real -Time Systems (Bio-Rad) following the protocol supplied by 

PCRBiosystem, including an initial Taq activation step at 95 C for 2 min followed by 38 cycles of 
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denaturation (95 °C), annealing (the annealing temperatures are given in Table 1) and extension 

(63°C). In addition, an amplicon-specific melting temperature obtained in the above gradient test was 

applied to avoid any noise from smaller non-specific products, such as dimers, prior to the product 

acquisition. Concentrations of the sample amplicons were calculated using the standard curve and a 

semi-log regression built in the CFX Manager software package (Bio-Rad). The limit of 

quantification was 1 × 10
−6

 - 1 × 10
−7

ng/ml for all tested genes.  

 

Statistical data analysis 

Among the four selected reference genes, only the expression of GAPDH was not significantly 

altered by the treatments (see Results below). The concentration of DNA for all the target genes was, 

therefore, normalised to the expression of GAPDH as described previously [44]. Statistical data 

analysis was carried out using SPSS V23 (Chicago, IL, USA). Logarithmical transform (BST2, 

HERC5, ISG15, MX2, OAS1Y, RSAD2, SAMD9 and USP18) was applied where the data were not 

normally distributed. A linear mixed effect model was used for analysis of variance (ANOVA) with 

randomized block design, which included treatments (CONT, ncpBVDV, IFNT and their combination) 

as fixed effects and cow as random effect. The statistical level of significance was set to P < 0.05. 

Where ANOVA showed statistical significance, Fisher’s LSD multiple comparisons based on the least 

square means were performed to identify the sources of differences.    

 

RESULTS 

The PCR test using the RNA extracted from the uterine tissues showed that the uteri used for the 

experiment were initially free of BVDV infection. An immunocytochemical procedure as described 

previously [31] was used to demonstrate that ncpBVDV antigen was detected in both the epithelial 

and stromal cells following experimental infection, with no cross-infection in the controls (data not 

shown). At the end of culture (day 9 in total and five days after ncpBVDV infection), ncpBVDV RNA 

was also detected by PCR in the endometrial cultures treated with ncpBVDV or ncpBVDV+IFNT 
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while it was not detectable in the CONT or IFNT-treated samples (Fig. 1). The MTS reduction assay 

demonstrated that viability was not affected by the individual or combined treatments at the doses 

used. After exposure of the cultured endometrial cells to ncpBVDV for 4 days and to IFNT at 0 or 

100 ng/ml for 24 h, the absorbance values at 490 nm in a cell viability assay were 1.7 ± 0.07 for 

CONT, 1.8 ± 0.04 for IFNT, 1.7 ± 0.09 for ncpBVDV and 1.7 ± 0.06 for ncpBVDV+IFNT (mean ± 

SE, n=6/group, P > 0.05). These results are in accord with the strain of BVDV selected for use which 

was known to be non-cytopathic. 

 

Effect of ncpBVDV, IFNT and their combination on expression of the selected reference genes by 

uterine endometrial cells 

All four potential reference genes (ACTB, RPL19, GAPDH and 18SrRNA) were highly expressed 

in the cultured bovine endometrial cells as measured in absolute units using qPCR (Table 2). Only 

GAPDH expression, however, remained stable following treatments (P > 0.05).  RPL19 expression 

was increased by the individual treatments with IFNT or ncpBVDV, whilst expression of ACTB and 

18SrRNA was significantly lower following the combined treatment (P<0.05-0.01). For subsequent 

comparison of the treatment effects the expression levels of each gene were, therefore, normalised 

against GAPDH. The absolute expression values of the candidate genes were also shown for the 

CONT cell cultures.  All 18 candidate genes were detected with a large range in the basal levels of 

expression (Table 3).   

 

Effect of ncpBVDV and IFNT alone on expression of candidate genes 

ncpBVDV infection alone generally had little effect on gene expression (Fig. 2). Only one gene, 

TRIM56, was significantly up-regulated five days after infection (P<0.001) whereas expression of 

three ISGs (ISG15, MX2, BST2) together with IL1B was reduced (P<0.05). As anticipated, IFNT 

treatment alone significantly increased expression of all 17 candidate ISGs tested (P < 0.05-0.0001) 

but there was a tendency (P = 0.06) for IFNT to decrease expression of IL1B (Fig. 2). 
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Effect of IFNT on expression of candidate genes in BVDV infected endometrial cells 

In contrast to the limited effect of ncpBVDV infection alone, the virus had a profound influence on 

the ability of IFNT to up-regulate the expression of the candidate ISGs. Of the 17 ISGs tested, the 

stimulatory effect of IFNT on expression of 15 was significantly inhibited (P < 0.05 - 0.001), 

generally to a value intermediate between that found in the CONT and IFN treated cells (Fig. 2). 

Genes responding in this way included ISG15, HERC5, USP18, DDX58, IFIH1, IFIT1, IFIT3, BST2, 

MX1, MX2, RSAD2, OAS1Y, SAMD9, GBP4 and PLAC8. BVDV infection did not, however, alter 

IFNT-stimulated mRNA expression of two genes (P > 0.05), TRIM56 or IFI27. Whereas ncpBVDV 

alone caused a small but significant reduction in IL1B (P < 0.05), expression of this gene was 

markedly reduced by the combined treatment (P < 0.001).  

 

ISG15 protein assay 

ISG15 is known to be secreted as a cytokine, so its protein concentration was measured by ELISA in 

the medium. This was nearly doubled following treatment with IFNT alone (P<0.01). BVDV 

infection alone did not change the concentration but in the combined treatment BVDV completely 

inhibited the IFNT stimulation (Fig. 3). 

 

DISCUSSION 

Many previous publications have described the key influence of IFNT in the maternal recognition 

of pregnancy in cows, which includes maintenance of the corpus luteum and development of a 

receptive environment in the uterus for successful implantation (Reviewed by [25, 27, 28]). During 

this process many ISG are up-regulated in the endometrial cells [22, 23, 25], and we confirmed here 

that expression of all the candidate ISGs increased significantly following treatment with IFNT alone. 

BVDV is a major cause of reduced fertility in many countries [2, 3]. The virus is known to have 
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evolved a variety of mechanisms to help it evade detection and eradication by host cells [13-15]. We 

confirmed here that ncpBDVD can become established and proliferate within epithelial and stromal 

cells of the uterine endometrium. While infection alone produced few changes in gene expression, we 

show here for the first time that the ability of endometrial cells to respond to IFNT by increased 

expression of a variety of ISGs was markedly inhibited in ncpBDVD infected cells. This is likely to 

facilitate the ability of the virus to survive within the uterine environment and may well contribute to 

the reduced fertility of infected cows.  

The model system we developed was based on a mixed culture of epithelial and stromal cells as 

both can become infected with virus and the interaction between the two cell types is important in the 

maternal recognition of pregnancy. Both cell types are also known to exhibit innate immune activity 

[33]. The immune cell population  may be important modulators of the response in vivo but were not 

included in our system [31], allowing us to demonstrate responses of the endometrial cells alone. We 

have shown previously that infection of these mixed endometrial cultures with ncpBVDV inhibits 

their immune response to a challenge with bacterial LPS [19]. Further validation of the system was 

provided by showing that IFNT treatment alone stimulated expression of PTGS1 and synthesis of 

PGE2 [29]. This is in accord with the suggested importance of PGE2 as a key signalling molecule in 

early pregnancy [27, 30]. The cultured cells expressed PGR, ESR1 and OTR as expected [29] in 

addition to the TLR receptors which are important for the detection of RNA viruses (TLR2, -3, -4, -7 

and -8) [16, 45].  Progesterone is also known to play a key role in modulating the endometrial 

response to IFNT. The timing of the postovulatory progesterone rise co-ordinates the temporal 

changes in the endometrial transcriptome. Progesterone down regulates its own receptor while 

inducing a variety of genes whose expression is later increased further by IFNT. These include genes 

involved in transport of glucose and amino acids, cell proliferation and PG synthesis [28, 32]. 

Progesterone treatment was not included in the current experimental design as it would have 

introduced too many variables to test with adequate replication in the same batch of isolated cells. Its 

absence may, however, have altered some of the gene expression profiles in response to IFNT in 

comparison with the in vivo situation. 
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The cells were infected with ncpBVDV several days before the IFNT challenge. This was done to 

mimic one potential in vivo situation. Cows which have not previously been exposed to BVDV 

generally become infected following a herd breakdown, either directly from the persistently infected 

(PI) animal or from other cows which have recently become acutely infected. This may happen during 

the calving period when heifers and older cows are often mixed. Infection is also possible (although 

less likely) with semen from a PI bull or following intra-uterine transfer of infected embryos on d 7 of 

the oestrous cycle [9, 10, 46]. The length of time the virus can subsequently survive in the uterus has 

not been well established, but there is evidence that this can be for several weeks. Depending on the 

relative timing of infection and mating, this could impair fertilization and very early embryo 

development [47] or disrupt MRP as suggested by the present experiment.  

One key mechanism by which BVDV can evade the host immune response is by the action of the 

viral protein N
pro

 which blocks production of Type 1 interferons [13, 19, 48]. On the other hand, there 

was up-regulation of type I interferon-induced genes in spleen and tracheo-bronchial lymph nodes of 

beef calves five days after BVDV infection [49] and in the blood of transiently infected mid-pregnant 

heifers and their fetuses [50]. There are a number of possible reasons behind these discrepancies. 

Different cell types may respond to BVDV infection differently and there are differences in virulence 

between strains of type 1 and type 2 ncp BVDV [51]. The absence of immune cells in most in vitro 

cultures is also a likely factor.  Nevertheless, the lack of any rise in expression of ISGs with the single 

exception of TRIM56 following the ncpBVDV treatment alone in the present study implies that the 

endometrial cells were not exposed to a significant increase in self-generated Type 1 IFN prior to the 

experimental treatment with IFNT.  

When faced with a viral attack, the body mobilizes its’ defence systems to restrict, neutralize and 

remove the virus. Gene targeting studies have revealed there are four main effector pathways of IFN-

mediated antiviral responses, including an ISG15 ubiquitin-like pathway, an MxGTPase pathway, an 

OAS1-RNaseL pathway and a protein kinase R pathway [52]. Our present study demonstrated that 

IFNT challenge activated these pathways to develop a pro-immune and antiviral environment in the 

uterus by stimulating ISG expression. Inhibition of the stimulatory effect of IFN on uterine ISG 
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production may, however, facilitate the establishment of life-long persistent infection of bovine 

fetuses with BVDV following intra-uterine infection of the dam in the first trimester of pregnancy [53, 

54], so leading to the birth of PI animals which are a major cause of disease spread within herds [4]. 

ISG15 is one of the most upregulated genes during pregnancy recognition in cows. This may 

facilitate successful conceptus attachment or act as a defence strategy against infection [22, 25, 55]. 

Its precise role in this respect has yet to be determined but studies in mice have shown increased 

embryo mortality in Isg15
-/-

 dams [56]. In the present study BVDV infection markedly inhibited both 

basal and IFNT-induced ISG15 expression. Free ISG15 is a cytokine to induce natural killer cell 

proliferation and IFN-γ production and to act as a chemotactic factor for neutrophils [57] and we 

confirmed here both its IFNT-stimulated secretion into the medium and the suppression of the 

stimulation by BVDV infection. ISG15 also acts intracellularly as an ubiquitin-like modifier of many 

target proteins. In a process known as ISGylation, the C-terminus of ISG15 is conjugated to lysine 

residues in the target protein following consecutive catalysis with three enzymes E1, E2 and E3 [58] 

(see also Supplementary Fig. 2). The modified protein may be targeted to lysosomes for destruction or 

used elsewhere. HERC5 and TRIM56 are both E3 ligases. HERC5 does not have substrate specificity 

so is able to block the IFN-mediated rise in the total level of ISGylated cellular proteins [58]. TRIM56 

is a single-RING-finger E3 ligase which interacts specifically with the N-terminal protease of BVDV, 

N
pro

, so exhibiting anti-viral activity [17]. It was interesting to note that TRIM56 was the only ISG 

tested which was up-regulated by BVDV alone whereas HERC5 followed the more common pattern 

in which ncpBVDV alone had no effect but the virus markedly inhibited IFNT-stimulated up-

regulation.  

USP18 is an ubiquitin-specific protease which removes ISG15 from the modified protein (De-

ISGylation) and can also process the ISG15 precursor protein (Supplementary Fig 2) [34-36]. IFN-

induced USP18 expression was also inhibited by ncpBVDV. ISGylation affects many proteins with 

important biological functions, including regulation of 1) innate immunity and anti-viral/bacterial 

infections, 2) proteasome function for protein turnover, 3) apoptosis and tumorigenesis and 4) cell 

proliferation and remodelling [36]. The overall up-regulation of ISG15, HERC5 and USP18 by IFNT 
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supports the suggestion that the ISGylation pathway is an important regulator of protein processing in 

the endometrium during MRP [55], with the results of the present study implying that this system can 

be inhibited by ncpBVDV. On the other hand, up-regulation of TRIM56 by ncpBVDV shows that the 

endometrial cells were still able to offer some immune response, even if this was much reduced.  

DDX58 (RIGI), IFIH1 (MDA5), IFIT1 (ISG56), MX1 and MX2 are all potential targets of 

ISGylation. DDX58 and IFIH1 are both DEAD box proteins which are cytosolic sensors of viral RNA. 

They act as RNA helicases and are implicated in a number of cellular processes involving RNA 

binding and alteration of RNA secondary structure. DDX58 recognises ssRNA whereas IFIH1 targets 

dsRNA. As BVDV is a single stranded virus, it would only be recognised by IFIH1 during the RNA 

replication phase [50, 53, 59]. The virus may evade detection by rapid incorporation into the 

endosome which buds off to form multivesicular bodies [60, 61]. Although these can potentially 

target their contents to lysosomes for disposal, multivesicular bodies can also shield the viral protein 

from detection except when the viral ribonoprotein is released into the cytoplasm before uptake into 

the endoplasmic reticulum for replication (see Fig. 4). In contrast to the situation reported here, both 

DDX58 and IFIH1 were upregulated in fetal blood cells in response to persistent infection with 

ncpBVDV [50, 53, 59].  

All the remaining ISGs studied apart from PLAC8 have known antiviral activity. IFIT1 and IFIT3 

(also called retinoic acid-induced gene G protein, RIGG) both encode IFN-inducible proteins which 

can form a cytoplasmic complex to recognise and destroy viral RNA, so acting as inhibitors of viral 

replication [62, 63]. We found that IFIT1 was much more highly expressed than IFIT3 in bovine 

endometrial cells, by a factor of over 2,000. MX1 and MX2, the Mx dynamin-like GTPases, are key 

effectors in MxGTPase antiviral pathways. They can disturb the transport, transcription and 

translation of viruses within the cells [52, 64]. IFI27 (ISG12) is involved in promoting apoptosis via 

mitochondrial membrane destabilization that may influence the innate immune response of IFNs and 

cellular metabolism [65]. It and TRIM56 were the only ISGs tested in the present experiment in which 

up-regulation by IFNT was not affected by ncpBVDV infection. The OAS1 (including OAS1Y) gene 

family are the key effectors in the OAS1-RNaseL antiviral pathway [52]. They sense exogenous 
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nucleic acid and activate endoribonuclease L (RNAseL) which degrades viral RNA [66]. RSAD2 

(Viperin) interacts with non-structural viral proteins to inhibit viral RNA replication and it can also 

limit egress of some viruses from the cell [67, 68]. GBP4 is an IFN-induced GTPase which disrupts 

the interaction of TNF receptor associated factor 6 (TRAF6) with IRF7, so reducing virus mediated 

induction of type 1 IFNs [18]. SAMD9 is a facilitator of endosome fusion which participates in the 

formation of granules with antiviral properties [69]. BST2 acts as the "tetherin" molecule to restrict 

the egress of many viruses, such as HIV-1 and Ebola virus, so reducing their spread within the host 

[70]. The down-regulation of the stimulatory effect of IFNT on all these genes by ncpBVDV is 

therefore clearly able to inhibit many of the mechanisms by which a cell normally combats a viral 

attack (Fig. 4A). 

PLAC8 was originally identified in mouse placenta [71]. It has subsequently been detected in a 

variety of cell types including bovine endometrium [72] and was the gene with the highest basal 

expression value in the bovine endometrial cells studied in the present paper. It is upregulated by 

IFNT but its function appears variable according to cell type. It can inhibit growth of some cancers by 

attenuating cell-cycle progression, either induce or inhibit apoptosis and inhibit proliferation of 

endothelial colony-forming cells [38, 73], while PLAC8 deficient mice have defects in innate 

immunity [74]. The role of PLAC8 in bovine implantation remains to be determined.  

The final gene investigated in the present study was the pro-inflammatory cytokine IL1B. In this 

case IFNT treatment alone tended to reduce expression whereas the combined treatment of ncpBVDV 

+ IFN resulted in significant down-regulation in the endometrial cells.  Its moderate inhibition by 

IFNT may be beneficial during implantation by preventing immune rejection [39], but the much 

greater inhibition in the presence of ncpBVDV may lead to decreased uterine immunity. In addition to 

the antiviral effects of uterine ISGs, many of the proteins encoded by these genes also possess 

antibacterial functions. Numerous immune genes, including all the ISGs examined here (ISG15, 

HERC5, USP18, DDX58, IFIT1, IFIT3, MX2, RSAD2, GBP4, SAMD9, IFI27, OAS1Y and BST2) were 

upregulated following treatment of bovine uterine endometrial cells with the bacterial endotoxin LPS 

[31]. This stimulatory effect was again significantly inhibited in the presence of ncpBVDV infection 
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[19, 31]. Infection of bovine uterine endometrial cells with ncpBVDV also induced an endocrine 

switch of PG production from PGF2α to PGE2 [29]. As PGF2α is an immune enhancer and PGE2 is an 

immune suppressor in the uterus [75, 76], this switch would also lead to decreased uterine immunity. 

These results support the suggestion that BVDV infection can predispose cows to develop 

endometritis due to bacterial infection following calving. This in turn may also contribute to early 

embryonic death and failure of pregnancy establishment [77]. 

In summary, IFNT challenge significantly stimulated the mRNA expression of many ISGs in 

uterine endometrial cells. These ISGs are clearly important for pregnancy recognition and 

implantation in the cow, although their precise actions in this respect generally remain to be 

established. They do, however, have more well defined roles in protecting the host from both viral and 

bacterial infections. We show here in an in vitro situation that the stimulatory effect of IFNT on 15 

out of 17 ISGs tested was inhibited by prior infection with ncpBVDV, as summarised in Fig. 4. As 

outlined above, ncpBVDV normally evades detection in host cells by down regulation of Type 1 IFN 

synthesis. As it was still able to downregulate nearly all the ISGs in the face of exogenous IFNT 

treatment, the virus clearly has additional defence mechanisms available. Future work is warranted to 

determine whether these ISGs are also downregulated in vivo in the endometrium of recently mated 

cows transiently infected with BVDV. Previous studies show that if bovine conceptuses have not 

elongated sufficiently by day 16 of pregnancy, then their IFNT production will be inadequate to 

prevent onset of the normal luteolytic mechanism [21, 24]. This provides supporting evidence that a 

failure of the normal downstream effects of IFNT, as shown here, is also likely to result in pregnancy 

failure. Decreased uterine immunity against both viral and bacterial infection may provide another 

mechanism whereby ncpBVDV infection can cause early embryonic death and reduced fertility. 

Finally, the remarkable ability of ncpBVDV to inhibit bovine uterine defence systems may, at least in 

part, provide a mechanism whereby the reproductive system becomes a major site for ncpBVDV 

infection, facilitating maintenance and spread of this disease within the cattle population. 
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Fig. 1. Validation of ncpBVDV infection in bovine endometrial cell culture groups using PCR with 

RNA from the cells harvested at the end of the experiment. L1: DNA ladder, L2: ncpBVDV positive 

control, L3: CONT, L4: IFNT, L5: ncpBVDV and L6: ncpBVDV+IFNT. 
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Fig. 2. Effect of CONT, ncpBVDV, IFNT and ncpBVDV+IFNT treatments on gene expression in 

bovine endometrial cells. Values are expressed as the ratios to GAPDH after an absolute gene 

quantification using qPCR and are presented as the mean ± SEM. The columns labelled with different 

letters were significantly different at P < 0.05-0.0001 (a > b > c > d).  

 

 

 

Fig. 3. Effect of CONT, ncpBVDV, IFNT and ncpBVDV+IFNT treatments on secretion of ISG15 

into the culture medium. Results are presented as the mean ± SEM of 10 individual cow endometrial 

samples tested. The columns labelled with different letters were significantly different a > b at P < 

0.05-0.01.  
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Fig. 4. Diagrams illustrating the potential effects of an acute ncpBVDV infection on expression of 

uterine ISGs and pregnancy recognition in the cow. Panel (A) shows the points at which cells 

normally detect and deactivate the virus. (1) ncpBVDV reaches the reproductive tract following 

infection. (2) The virus attaches to the host cell membrane and is taken up by clathrin mediated 

endocytosis. (3) Virus is incorporated into the endosome, where it may be sensed by TLR3 or TLR7/8. 

(4) The endosome buds off multivesicular bodies. While in these ncpBVDV may be protected from 

detection by cytoplasmic pattern recognition receptors (PRR), in particular DDX58 which detects 

single stranded (ss)RNA. SAMD9 is a facilitator of endosome fusion. (5) Alternatively virus may be 

detected and targeted to lysosomes for disposal. This may involve ISGylation. ISG15 may also be 

secreted as a cytokine. (6) Viral ssRNA is released into the cytoplasm. (7) Viral mRNA is translated 

into a single polyprotein in the endoplasmic reticulum. This is cleaved into structural proteins (three 

envelope and one capsid protein) and about eight non-structural proteins, which are involved in 

replication and assembly. These include the protease N
pro

. Viral ssRNA is replicated and transcribed. 

During this process double stranded (ds) RNA is produced, which can be detected by the PRR IFIH1. 

New virons are assembled. The ISGs RSAD2, MX1, MX2, IFIT1, IFIT3, IRF3 and OAS1Y are all 

able to disrupt viral transcription and/or translation (8) The ncpBVDV virons pass through the Golgi 

complex. (9) Virons are transported from the Golgi to the cell surface in small exocytotic vesicles. (10) 

New virons are released from the cell by exocytosis. Both RSAD2 and BST2 are able to inhibit viral 

egress. *IFNT-stimulated ISGs significantly suppressed by ncpBVDV. Panel (B) illustrates possible 

consequences of ncpBVDV infection for signalling by IFNT during the maternal recognition of 

pregnancy (MRP). (1) Infection of bovine endometrium with ncpBVDV and viral intracellular 

replication. (2) ncpBVDV produces viral factors which can counteract the host’s immune response. (3) 

The early bovine conceptus subsequently secretes IFNT into the uterine lumen which initiates and 

establishes MRP, normally by day 16 of gestation in cows. (4) IFNT, a type I IFN, signals through 

binding to the interferon alpha receptors (IFNAR) to stimulate production of many ISGs crucial for 

MRP and uterine immunity. (5, 6, 7) Viral-derived factors inhibit the type I IFN signalling and 

transcription pathways, leading to decreased expression of many IFNT-stimulated ISGs. (8) 

ncpBVDV infection may, therefore, disrupt MRP and uterine immunity.  
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Supplementary Fig. 1. Summary diagram showing the experimental design used. ncpBVDV, non 

cytopathic bovine virus diarrhea virus; CONT, control; IFNT, interferon tau. 

 

Supplementary Fig. 2. Illustration of the ISGylation pathway. Proteases cleave off the C-terminal 

extensions from ISG15 precursors to generate mature ISG15. This may be secreted as a cytokine or 

released during cell lysis. Alternatively, ISG15 may be activated by the sequential actions of enzymes 

E1 and E2. It is then linked to a target protein by the action of an ISG15 E3 ligase [58]. These include 

HERC5 and TRIM56. The modified protein may be either targeted to lysosomes for destruction or 

used elsewhere in the cell. USP18 (UBP43) reverses the ISGylation process by cleaving off ISG15 

from the target protein. It can also act as one of the ISG processing proteases. The pathway is up-

regulated by Type 1 interferons. These include IFNα, normally produced in response to a viral 

infection, and IFNT, produced by the ruminant conceptus during the maternal recognition of 

pregnancy.  
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Table 1. Oligonucleotide primer sequence information  

Gene Primer sequence (5’-3’) 
GenBank 

accession 

Product 

length (bp) 

Annealing  

(C) 

BST2 Forward: TGATCTACTTCGCTGTCATTGC  XM_871059.6 167 61.4 

Reverse: TGGGTCTGTTCCTTCTTCAGAG    

MX1 Forward: ACATGATCGTCAAGTGCCGT NM_173940.2 113 61.4 

Reverse: AAGGTCCCTGAAATGTGCGT    

MX2 Forward: TATATGATCGTGAAGTGCCGGG NM_173941.2 170 59.0 

Reverse: AGCTCGGTGGTAAGTCTTTCTG    

RSAD2 Forward: TATGCGCTTCCTGAACTGTAGA NM_001045941.1 150 57.0 

Reverse: AGGTCTGCTTTGCTCCATACAT    

USP18 Forward: CCCTGAAAACGCTGGAGGAT NM_001017940.1 133 61.4 

Reverse: GGCAGATGGGTCAGTGTCAA    

OAS1Y Forward: CTCACAGAGTTCGGGTGTCC NM_001040606.1 226 61.4 

Reverse: TGCCGTTTCTGGACCTCAAA    

ISG15 Forward: AGAAGATCAATGTGCCTGCTTT NM_174366.1 161 61.4 

Reverse: CTTGTCGTTCCTCACCAGGAT    

GBP4 Forward: CCTACCTGATGAACCGCCTA NM_001102261.2 197 61.4 

Reverse: CAGGGCAAAGATCCACAAGT    

IFI27 Forward: GAATCACTGCCTCCTCCTTG NM_001038050.2 145 62 

Reverse: CCCACCAAGAGTTTGGATGA    

IFIT1 Forward: GGAACGTGCTGTGCAACTAA XM_010819765.1 136 62 

Reverse: TTTGTCGAGTGCTTTCATGC    

IFIT3 Forward: TGCTGACAAGGTGAAACGAG NM_001075414 111 63.2 

Reverse: TTTTTCCCACCGCACTTTAC    

DDX58 Forward: TCCGAACCAACAGAGACAGC XM_002689480.4 137 64.2 

Reverse: TCTGCCTCTGGTCTGGATCA    

PLAC8 Forward: ACCCAGTTGTTTCACAGCCA NM_001025325.2 135 62 

Reverse: GACATGAAAGGCACAGGGGA    

IFIH1 Forward: AGCCACTCCTTTTAGCCACG XM_010802053.1 194 62 

Reverse: TCCCATGGTGCCTGAATCAC    

HERC5 Forward: GGTGATGGAAAGTACGGGCA NM_001101995.1 193 62 

Reverse: CACCGTTTCCCAGTTGTCCT    

TRIM56 Forward: TTCAGACCCCAAATCAGGAC NM_001206574.1 126 62 

Reverse: TCTGGGCTCTGCTCTCTTTC    

SAMD9 Forward: CGCTGGACATGCTAACAGAA NM_001205781 181 64.2 

Reverse: TTAACTGCCACGTTCCCTTC    

IL1B Forward: ACGAGTTTCTGTGTGACGCA NM_174093.1 147 61.4 

Reverse: TGCAGAACACCACTTCTCGG    

GAPDH Forward: GGTCACCAGGGCTGCTTTTA NM_001034034.2 147 61.4 

Reverse: TTCCCGTTCTCTGCCTTGAC    

RPL19 Forward: TCGATGCCGGAAAAACAC NM 001040516 119 59 

Reverse: ATTCTCATCCTCCTCATCCAG    

ACTB Forward: GAAATCGTCCGTGACATCAA NM_173979.3 182 61.4 

Reverse: AGGAAGGAAGGCTGGAAGAG    

18SrRNA Forward: CGGCGACGACCCATTCGAAC AY779625 99 64.5 

Reverse: GAATCGAACCCTGATTCCCCGTC    
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Table 2. Effect of ncpBVDV, IFNT and their combination on expression of the selected reference 

genes in cultured mixed bovine endometrial cells#  

Treatments ACTB  RPL19  GAPDH  18SrRNA 

CONT 81 ± 8.6
a
 118 ± 10.3

b
 159 ± 16.4 27,490 ± 2,301.3

a
 

IFNT 99 ± 20.5
a
 166 ± 19.7

a
 165 ± 24.8 23,258 ± 2,270.5

a
 

ncpBVDV 74 ± 11.7
ab

 151 ± 6.0
a
 170 ± 11.1 26,189 ± 3,490.3

a
 

IFNT+ncpBVDV 48 ± 7.3
b
 138 ± 12.0

ab
 170 ± 17.7 15,665 ± 813.2

b
 

# Expressed in pg/ug RNA 

Within columns, a>b, P<0.05-0.01.  

 

Table 3. Basal expression values of the candidate genes measured in fg/µg RNA in the CONT 

cultures of mixed bovine endometrial cells using absolute qPCR
#
  

High expression Moderate expression Low expression 

PLAC8 9240 ± 2002.7  HERC5 530 ± 90.9 USP18 0.63 ± 0.17 

IFIT1 4634 ± 771.8 GBP4 306 ± 108.7 OAS1Y 0.14 ± 0.04 

IFIH1 2144 ± 278.6  IFI27 155 ± 29.0 BST2 0.0014 ± 0.0004 

SAMD9 1374 ± 329.7 ISG15 96 ± 19.4    

TRIM56 1094 ± 74.7 RSAD2 92 ± 16.9   

DDX58 984 ± 42.5 MX1 50 ± 4.8   

  IL1B 24 ± 5.7    

  MX2 5.2 ± 1.2   

  IFIT3 1.9 ± 0.9   

 

#
 Note that expression levels do not necessarily translate into similar levels of protein production due 

to further down-stream regulation in processing. 

 

 


