13 research outputs found

    State of the Art in Skinning Techniques for Articulated Deformable Characters

    Get PDF
    Skinning is an indispensable component of the content creation pipeline for character animation in the context of feature films, video games, and in the special effects industry. Skinning techniques define the deformation of the character skin for every animation frame according to the current state of skeletal joints. In this state of the art report, we focus on the existing research in the areas of skeleton-based deformation, volume preserving techniques and physically based skinning methods. We also summarize the recent research in deformable and soft bodies simulations for articulated characters, and discuss various geometric and examples-based approaches

    Position based skinning of skeleton-driven deformable characters

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in SCCG '14: Proceedings of the 30th Spring Conference on Computer Graphics, 9781450330701, May 2014 http://doi.acm.org/10.1145/2643188.2643194 ; Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected] Universit

    Skin Deformation Methods for Interactive Character Animation

    Get PDF
    Character animation is a vital component of contemporary computer games, animated feature films and virtual reality applications. The problem of creating appealing character animation can best be described by the title of the animation bible: “The Illusion of Life”. The focus is not on completing a given motion task, but more importantly on how this motion task is performed by the character. This does not necessarily require realistic behavior, but behavior that is believable. This of course includes the skin deformations when the character is moving. In this paper, we focus on the existing research in the area of skin deformation, ranging from skeleton-based deformation and volume preserving techniques to physically based skinning methods. We also summarize the recent contributions in deformable and soft body simulations for articulated characters, and discuss various geometric and example-based approaches

    Skeleton based cage generation guided by harmonic fields

    Get PDF
    International audienceWe propose a novel user-assisted cage generation tool. We start from a digital character and its skeleton, and create a coarse control cage for its animation. Our method requires minimal interaction to select bending points on the skeleton, and computes the corresponding cage automatically. The key contribution is a volumetric field defined in the interior of the character and embedding the skeleton. The integral lines of such field are used to propagate cutting surfaces from the interior of the character to its skin, and allow us to robustly trace non-planar cross sections that adapt to the local shape of the character. Our method overcomes previous approaches that rely on the popular (but tedious and limiting) cutting planes. We validated our software on a variety of digital characters. Our final cages are coarse yet entirely compliant with the structure induced by the underlying skeleton, enriched with the semantics provided by the bending points selected by the user. Automatic placement of bending nodes for a fully automatic caging pipeline is also supported

    The Palestinian primary ciliary dyskinesia population: first results of the diagnostic, and genetic spectrum

    Get PDF
    BACKGROUND: Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. METHODS: Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. RESULTS: 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median −1.90 (−5.0–1.32)) and growth was mostly within the normal range (z-score mean −0.36 (−3.03–2.57). 19% individuals had finger clubbing. CONCLUSIONS: Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity

    Dynamic implicit muscles for character skinning

    Get PDF
    FOLD-Dyn; National Science Foundation; Activision; Adobe; NVIDIA Corporation; Anatoscope compan

    Skeleton based cage generation guided by harmonic fields

    No full text
    We propose a novel user-assisted cage generation tool. We start from a digital character and its skeleton, and create a coarse control cage for its animation. Our method requires minimal interaction to select bending points on the skeleton, and computes the corresponding cage automatically. The key contribution is a volumetric field defined in the interior of the character and embedding the skeleton. The integral lines of such field are used to propagate cutting surfaces from the interior of the character to its skin, and allow us to robustly trace non-planar cross sections that adapt to the local shape of the character. Our method overcomes previous approaches that rely on the popular (but tedious and limiting) cutting planes. We validated our software on a variety of digital characters. Our final cages are coarse yet entirely compliant with the structure induced by the underlying skeleton, enriched with the semantics provided by the bending points selected by the user. Automatic placement of bending nodes for a fully automatic caging pipeline is also supported
    corecore