93 research outputs found

    The structure and function of the glycine receptor

    Full text link

    Alpha9 nicotinic acetylcholine receptors and the treatment of pain

    Get PDF
    Chronic pain is a vexing worldwide problem that causes substantial disability and consumes significant medical resources. Although there are numerous analgesic medications, these work through a small set of molecular mechanisms. Even when these medications are used in combination, substantial amounts of pain often remain. It is therefore highly desirable to develop treatments that work through distinct mechanisms of action. While agonists of nicotinic acetylcholine receptors (nAChRs) have been intensively studied, new data suggest a role for selective antagonists of nAChRs. α-Conotoxins are small peptides used offensively by carnivorous marine snails known as Conus. A subset of these peptides known as α-conotoxins RgIA and Vc1.1 produces both acute and long lasting analgesia. In addition, these peptides appear to accelerate the recovery of function after nerve injury, possibly through immune mediated mechanisms. Pharmacological analysis indicates that RgIA and Vc1.1 are selective antagonists of α9α10 nAChRs. A recent study also reported that these α9α10 antagonists are also potent GABA-B agonists. In the current study, we were unable to detect RgIA or Vc1.1 binding to or action on cloned GABA-B receptors expressed in HEK cells or Xenopus oocytes. We review the background, findings and implications of use of compounds that act on α9* nAChRs.11* indicates the possible presence of additional subunits.Fil: McIntosh, J. Michael. University of Utah; Estados UnidosFil: Absalom, Nathan. The University of Sydney; AustraliaFil: Chebib, Mary. The University of Sydney; AustraliaFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Farmacología; ArgentinaFil: Vincler, Michelle. Wake Forest University Health Sciences; Estados Unido

    Investigating the role of loop c hydrophilic residue 'T244' in the binding site of ρ1 GABAC receptors via site mutation and partial agonism

    Get PDF
    The loop C hydrophilic residue, threonine 244 lines the orthosteric binding site of ρ1 GABAC receptors was studied by point mutation into serine, alanine and cysteine, and tested with GABA, some representative partial agonists and antagonists. Thr244 has a hydroxyl group essential for GABA activity that is constrained by the threonine methyl group, orienting it toward the binding site. Significant decreases in activation effects of the studied ligands at ρ1 T244S mutant receptors, suggests a critical role for this residue. Results of aliphatic and heteroaromatic partial agonists demonstrate different pharmacological effects at ρ1 T244S mutant receptors when co-applied with GABA EC50 responses. ρ1 T244A and ρ1 T244C mutant receptors have minimal sensitivity to GABA at high mM concentrations, whereas, the ρ1 WT partial agonists, β-alanine and MTSEA demonstrate more efficacy and potency, respectively, than GABA at these mutant receptors. This study explores the role of Thr244 in the binding of agonists as an initial step during channel gating by moving loop C towards the ligand

    Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors : evidence of a novel benzodiazepine site in the α1-α1 interface

    Get PDF
    Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABAA receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn2+. At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target

    Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice.

    Get PDF
    We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5-14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level

    Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy

    Get PDF
    Background and Purpose: Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis-based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach: We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia-induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results: The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia-induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6-Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy-relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications: These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis-based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class

    Ligand-gated ion channels in genetic disorders and the question of efficacy

    No full text
    Whole-genome sequencing has unearthed a substantial number of individual variants in ion channels associated with genetic disorders. Ligand-gated ion channels, including glycine, γ-aminobutyric acid type A and nicotinic acetylcholine receptors, have long been known to harbour genetic variants associated with hyperekplexia and different forms of epilepsy. In some of these cases, missense variants enhance or impair the intrinsic ability of the receptor to convert ligand binding to channel opening, or the efficacy of receptor activation. We review the current understanding of how ligand-gated ion channels are activated and the properties that define the efficacy of an agonist, and how these properties can be altered by disease-causing variants. Additionally, we consider the mechanisms defining drug modulation of receptors and consider how this may differ in genetic variants. This fundamental knowledge is likely to be essential in understanding how effective treatments will be for patients with genetic variants in ligand-gated ion channels

    Probing the mode of neurotransmitter binding to GABA receptors using selectively fluorinated GABA analogues

    No full text
    Stereoselective fluorination is a useful technique for controlling the conformations of organic molecules. This concept has been exploited to create conformationally biased analogues of the neurotransmitter gamma-aminobutyric acid (GABA). Mono- and di-fluorinated GABA analogues are found to adopt different conformations, due to subtle stereoelectronic effects associated with the C-F bond. These conformationally biased GABA analogues exhibit different shape-dependent selectivity patterns towards GABA(A), GABA(B), and GABA(C) receptors, providing valuable information on the binding modes of the natural ligand at these medicinally important targets.</p

    High and low GABA sensitivity α4β2δ GABAA receptors are expressed in Xenopus laevis oocytes with divergent stoichiometries

    No full text
    GABAA receptors that contain the a4 and d subunits are thought to be located extrasynaptically, mediating tonic currents elicited by low concentrations of GABA. These a4bd receptors are modulated by neurosteroids and certain anesthetics, identifying them as important drug targets in research. However, pharmacological studies on these receptors have often yielded variable results, possibly due to the expression of receptors in different stoichiometries or arrangements. In this study, we injected different ratios of a4, b2 and d cRNA into Xenopus oocytes and measured the sensitivity to GABA and DS2 activation of the resulting receptor populations. By creating a matrix of RNA injection ratios from stock RNA concentrations, we were able to compare the changes in pharmacology between injection ratios where the ratio of only one subunit was altered. We identified two distinct populations of receptors, the first with an EC50 value of approximately 100 nM to GABA, a low Hill slope of approximately 0.3 and substantial direct activation by DS2. The second population had an EC50 value of approximately 1 lM to GABA, a steeper Hill slope of 1 and little direct activation, but substantial potentiation, by DS2. The second population was formed with high a4 ratios and low b2 ratios, but altering the ratio of d subunit injected had little effect. We propose that receptors with high sensitivity to GABA and direct activation by DS2 are the result of a greater number of b2 subunits being incorporated into the receptor
    corecore