30 research outputs found

    Serglycin-Deficiency Causes Reduced Weight Gain and Changed Intestinal Cytokine Responses in Mice Infected With Giardia intestinalis

    Get PDF
    The proteoglycan serglycin (SG) is expressed by different innate and adaptive immune cells, e.g. mast cells, macrophages, neutrophils, and cytotoxic T lymphocytes, where SG contributes to correct granule storage and extracellular activity of inflammatory mediators. Here the serglycin-deficient (SG(-/-)) mouse strain was used to investigate the impact of SG on intestinal immune responses during infection with the non-invasive protozoan parasite Giardia intestinalis. Young (asymptotic to 11 weeks old) oral gavage-infected congenic SG(-/-) mice showed reduced weight gain as compared with the infected SG(+/+) littermate mice and the PBS-challenged SG(-/-) and SG(+/+) littermate mice. The infection caused no major morphological changes in the small intestine. However, a SG-independent increased goblet cell and granulocyte cell count was observed, which did not correlate with an increased myeloperoxidase or neutrophil elastase activity. Furthermore, infected mice showed increased serum IL-6 levels, with significantly reduced serum IL-6 levels in infected SG-deficient mice and decreased intestinal expression levels of IL-6 in the infected SG-deficient mice. In infected mice the qPCR analysis of alarmins, chemokines, cytokines, and nitric oxide synthases (NOS), showed that the SG-deficiency caused reduced intestinal expression levels of TNF-alpha and CXCL2, and increased IFN-gamma, CXCL1, and NOS1 levels as compared with SG-competent mice. This study shows that SG plays a regulatory role in intestinal immune responses, reflected by changes in chemokine and cytokine expression levels and a delayed weight gain in young SG(-/-) mice infected with G. intestinalis

    Loss of Bladder Epithelium Induced by Cytolytic Mast Cell Granules

    Get PDF
    Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1β (IL-1β) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding

    Dual Targets for Mouse Mast Cell Protease-4 in Mediating Tissue Damage in Experimental Bullous Pemphigoid

    Get PDF
    Mouse mast cell protease-4 (mMCP-4) has been linked to autoimmune and inflammatory diseases, although the exact mechanisms underlying its role in these pathological conditions remain unclear. Here, we have found that mMCP-4 is critical in a mouse model of the autoimmune skin blistering disease bullous pemphigoid (BP). Mice lacking mMCP-4 were resistant to experimental BP. Complement activation, mast cell (MC) degranulation, and the early phase of neutrophil (PMN) recruitment occurred comparably in mMCP-4−/− and WT mice. However, without mMCP-4, activation of matrix metalloproteinase (MMP)-9 was impaired in cultured mMCP-4−/− MCs and in the skin of pathogenic IgG-injected mMCP-4−/− mice. MMP-9 activation was not fully restored by local reconstitution with WT or mMCP-4−/− PMNs. Local reconstitution with mMCP-4+/+ MCs, but not with mMCP-4−/− MCs, restored blistering, MMP-9 activation, and PMN recruitment in mMCP-4−/− mice. mMCP-4 also degraded the hemidesmosomal transmembrane protein BP180 both in the skin and in vitro. These results demonstrate that mMCP-4 plays two different roles in the pathogenesis of experimental BP, by both activating MMP-9 and by cleaving BP180, leading to injury of the hemidesmosomes and extracellular matrix of the basement membrane zone

    Some exact results in two dimensional sinh-poisson vortex dynamics

    No full text
    The dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic sine functional relation between the vorticity and the stream function. By employing recent advances in nonlinear waves theory a special 4-soliton solution and the corresponding configuration are studied. On applying the technique of coalescence of wavenumbers to the 4-soliton expansion, a new nonsingular solution is obtained. The flow configuration of this solution is studied.link_to_subscribed_fulltex

    Ivermectin-induced gene expression changes in adult Parascaris univalens and Caenorhabditis elegans : a comparative approach to study anthelminthic metabolism and resistance in vitro

    No full text
    Background: The nematode Parascaris univalens is one of the most prevalent parasitic pathogens infecting horses but anthelmintic resistance undermines treatment approaches. The molecular mechanisms underlying drug activity and resistance remain poorly understood in this parasite since experimental in vitro models are lacking. The aim of this study was to evaluate the use of Caenorhabditis elegans as a model for P. univalens drug metabolism/resistance studies by a comparative gene expression approach after in vitro exposure to the anthelmintic drug ivermectin (IVM). Methods: Twelve adult P. univalens worms in groups of three were exposed to ivermectin (IVM, 10(-13) M, 10(-11) M, 10(-9 )M) or left unexposed for 24 h at 37 degrees C, and total RNA, extracted from the anterior end of the worms, was sequenced using Illumina NovaSeq. Differentially expressed genes (DEGs) involved in metabolism, transportation, or gene expression with annotated Caemorhabditis elegans orthologues were identified as candidate genes to be involved in IVM metabolism/resistance. Similarly, groups of 300 adult C. elegans worms were exposed to IVM (10(-9) M, 10(-8) M and 10(-7) M) or left unexposed for 4 h at 20 degrees C. Quantitative RT-PCR of RNA extracted from the C. elegans worm pools was used to compare against the expression of selected P. univalens candidate genes after drug treatment. Results: After IVM exposure, 1085 DEGs were found in adult P. univalens worms but the relative gene expression changes were small and large variabilities were found between different worms. Fifteen of the DEGs were chosen for further characterization in C. elegans after comparative bioinformatics analyses. Candidate genes, including the putative drug target Igc-37, responded to IVM in P. univalens, but marginal to no responses were observed in C. elegans despite dose-dependent behavioral effects observed in C. elegans after IVM exposure. Thus, the overlap in IVM-induced gene expression in this small set of genes was minor in adult worms of the two nematode species. Conclusion: This is the first time to our knowledge that a comparative gene expression approach has evaluated C. elegans as a model to understand IVM metabolism/resistance in P. univalens. Genes in P. univalens adults that responded to IVM treatment were identified. However, identifying conserved genes in P. univalens and C. elegans involved in IVM metabolism/resistance by comparing gene expression of candidate genes proved challenging. The approach appears promising but was limited by the number of genes studied (n = 15). Future studies comparing a larger number of genes between the two species may result in identification of additional candidate genes involved in drug metabolism and/or resistance

    Quantitative Transcriptome Analysis of Purified Equine Mast Cells Identifies a Dominant Mucosal Mast Cell Population with Possible Inflammatory Functions in Airways of Asthmatic Horses

    No full text
    Asthma is a chronic inflammatory airway disease and a serious health problem in horses as well as in humans. In humans and mice, mast cells (MCs) are known to be directly involved in asthma pathology and subtypes of MCs accumulate in different lung and airway compartments. The role and phenotype of MCs in equine asthma has not been well documented, although an accumulation of MCs in bronchoalveolar lavage fluid (BALF) is frequently seen. To characterize the phenotype of airway MCs in equine asthma we here developed a protocol, based on MACS Tyto sorting, resulting in the isolation of 92.9% pure MCs from horse BALF. We then used quantitative transcriptome analyses to determine the gene expression profile of the purified MCs compared with total BALF cells. We found that the MCs exhibited a protease profile typical for the classical mucosal MC subtype, as demonstrated by the expression of tryptase (TPSB2) alone, with no expression of chymase (CMA1) or carboxypeptidase A3 (CPA3). Moreover, the expression of genes involved in antigen presentation and complement activation strongly implicates an inflammatory role for these MCs. This study provides a first insight into the phenotype of equine MCs in BALF and their potential role in the airways of asthmatic horses

    Proliferative and apoptotic status of tumor tissue.

    Get PDF
    <p>The proliferative activity is increased in tumors from RT<sup>pos</sup>SG<sup>ko</sup> mice compared to those from RT<sup>pos</sup>SG<sup>wt</sup> mice. Tumor sections from RT<sup>pos</sup>SG<sup>wt</sup> and RT<sup>pos</sup>SG<sup>ko</sup> mice were stained for apoptotic and proliferative activity using antibodies against Ki67 (a) and cleaved caspase-3 (Casp-3, b) respectively. Positive cells were counted and tumors from serglycin deficient animals had a significantly increased levels of proliferation (c) while no difference was detected in apoptosis between the two genotypes. Statistical analysis was performed using a two-tailed Mann-Whitney test. Error bars represent mean ± SEM.</p
    corecore