14 research outputs found

    Nonequilibrium critical dynamics of the three-dimensional gauge glass

    Get PDF
    We study the non-equilibrium aging behavior of the gauge glass model in three dimensions at the critical temperature. We perform Monte Carlo simulations with a Metropolis update, and correlation and response functions are calculated for different waiting times. We obtain a multiplicative aging scaling of the correlation and response functions, calculating the aging exponent bb and the nonequilibrium autocorrelation decay exponent λc/zc\lambda_c/z_c. We also analyze the fluctuation-dissipation relationship at the critical temperature, obtaining the critical fluctuation-dissipation ratio X∞X_\infty. By comparing our results with the aging scaling reported previously for a model of interacting flux lines in the vortex glass regime, we found that the exponents for both models are very different.Comment: 7 pages, 4 figures. Manuscript accpeted for publication in PR

    Aging phenomena in critical semi-infinite systems

    Full text link
    Nonequilibrium surface autocorrelation and autoresponse functions are studied numerically in semi-infinite critical systems in the dynamical scaling regime. Dynamical critical behaviour is examined for a nonconserved order parameter in semi-infinite two- and three-dimensional Ising models as well as in the Hilhorst-van Leeuwen model. The latter model permits a systematic study of surface aging phenomena, as the surface critical exponents change continuously as function of a model parameter. The scaling behaviour of surface two-time quantities is investigated and scaling functions are confronted with predictions coming from the theory of local scale invariance. Furthermore, surface fluctuation-dissipation ratios are computed and their asymptotic values are shown to depend on the values of surface critical exponents.Comment: 12 pages, figures included, version to appear in Phys. Rev.

    Scaling and universality in the aging kinetics of the two-dimensional clock model

    Full text link
    We study numerically the aging dynamics of the two-dimensional p-state clock model after a quench from an infinite temperature to the ferromagnetic phase or to the Kosterlitz-Thouless phase. The system exhibits the general scaling behavior characteristic of non-disordered coarsening systems. For quenches to the ferromagnetic phase, the value of the dynamical exponents, suggests that the model belongs to the Ising-type universality class. Specifically, for the integrated response function χ(t,s)≃s−aχf(t/s)\chi (t,s)\simeq s^{-a_\chi}f(t/s), we find aχa_\chi consistent with the value aχ=0.28a_\chi =0.28 found in the two-dimensional Ising model.Comment: 16 pages, 14 figures (please contact the authors for figures

    Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

    Full text link
    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Aging and effective temperatures near a critical point

    Get PDF
    The orientation fluctuations of the director of a liquid crystal(LC) are measured after a quench near the Fr\'eedericksz transition, which is a second order transition driven by an electric field. We report experimental evidence that, because of the critical slowing down, the LC presents, after the quench, several properties of an aging system, such as power law scaling versus time of correlation and response functions. During this slow relaxation, a well defined effective temperature, much larger than the heat bath temperature, can be measured using the fluctuation dissipation relation.Comment: to be published in PR

    Domain growth and aging scaling in coarsening disordered systems

    Full text link
    Using extensive Monte Carlo simulations we study aging properties of two disordered systems quenched below their critical point, namely the two-dimensional random-bond Ising model and the three-dimensional Edwards-Anderson Ising spin glass with a bimodal distribution of the coupling constants. We study the two-times autocorrelation and space-time correlation functions and show that in both systems a simple aging scenario prevails in terms of the scaling variable L(t)/L(s)L(t)/L(s), where LL is the time-dependent correlation length, whereas ss is the waiting time and tt is the observation time. The investigation of the space-time correlation function for the random-bond Ising model allows us to address some issues related to superuniversality.Comment: 8 pages, 9 figures, to appear in European Physical Journal

    On universality in aging ferromagnets

    Full text link
    This work is a contribution to the study of universality in out-of-equilibrium lattice models undergoing a second-order phase transition at equilibrium. The experimental protocol that we have chosen is the following: the system is prepared in its high-temperature phase and then quenched at the critical temperature TcT_c. We investigated by mean of Monte Carlo simulations two quantities that are believed to take universal values: the exponent λ/z\lambda/z obtained from the decay of autocorrelation functions and the asymptotic value X∞X_\infty of the fluctuation-dissipation ratio X(t,s)X(t,s). This protocol was applied to the Ising model, the 3-state clock model and the 4-state Potts model on square, triangular and honeycomb lattices and to the Ashkin-Teller model at the point belonging at equilibrium to the 3-state Potts model universality class and to a multispin Ising model and the Baxter-Wu model both belonging to the 4-state Potts model universality class at equilibrium.Comment: 17 page

    Ageing phenomena without detailed balance: the contact process

    Full text link
    The long-time dynamics of the 1D contact process suddenly brought out of an uncorrelated initial state is studied through a light-cone transfer-matrix renormalisation group approach. At criticality, the system undergoes ageing which is characterised through the dynamical scaling of the two-times autocorrelation and autoresponse functions. The observed non-equality of the ageing exponents a and b excludes the possibility of a finite fluctuation-dissipation ratio in the ageing regime. The scaling form of the critical autoresponse function is in agreement with the prediction of local scale-invariance.Comment: 20 pages, 15 figures, Latex2e with IOP macro

    Ageing in the critical contact process: a Monte Carlo study

    Full text link
    The long-time dynamics of the critical contact process which is brought suddenly out of an uncorrelated initial state undergoes ageing in close analogy with quenched magnetic systems. In particular, we show through Monte Carlo simulations in one and two dimensions and through mean-field theory that time-translation invariance is broken and that dynamical scaling holds. We find that the autocorrelation and autoresponse exponents lambda_{Gamma} and lambda_R are equal but, in contrast to systems relaxing to equilibrium, the ageing exponents a and b are distinct. A recent proposal to define a non-equilibrium temperature through the short-time limit of the fluctuation-dissipation ratio is therefore not applicable.Comment: 18 pages, 7 figures, Latex2e with IOP macros; final for

    On the definition of a unique effective temperature for non-equilibrium critical systems

    Full text link
    We consider the problem of the definition of an effective temperature via the long-time limit of the fluctuation-dissipation ratio (FDR) after a quench from the disordered state to the critical point of an O(N) model with dissipative dynamics. The scaling forms of the response and correlation functions of a generic observable are derived from the solutions of the corresponding Renormalization Group equations. We show that within the Gaussian approximation all the local observables have the same FDR, allowing for a definition of a unique effective temperature. This is no longer the case when fluctuations are taken into account beyond that approximation, as shown by a computation up to the first order in the epsilon-expansion for two quadratic observables. This implies that, contrarily to what often conjectured, a unique effective temperature can not be defined for this class of models.Comment: 32 pages, 5 figures. Minor changes, published versio
    corecore