8,909 research outputs found

    Detection of alteration associated with a porphyry copper deposit in southern Arizona

    Get PDF
    Computer processing of Landsat MSS data was performed using contrast stretching and band-to-band ratioing. A false color ratio composite picture showed color anomalies which coincided with known areas of alteration on and about Red Mountain. A helicopter survey of the study area was undertaken using a portable field reflectance spectrometer. One hundred fifty-six spectra were obtained in the 0.4 to 2.5 micrometer wavelength region. The spectra were digitized, and contour maps for 24 wavelength intervals were produced; no spectral anomalies were evident for the known altered areas. A contour map produced from the 1.6 and 2.2 micrometer ratio generally delineated the alteration areas. The 1.3, 1.6, and 2.2 micrometer wavelength data were canonically transformed using a transformation empirically derived from discriminant function analysis of altered and unaltered materials for the Goldfield, Nevada region, and a contour map was produced for the first canonical variable. The known areas of alteration were clearly defined on the contour map

    TM digital image products for applications

    Get PDF
    Computer compatible tapes (CCTs) of LANDSAT 4 thematic mapper (TM) digital image products are compared and reviewed. The following tape formats are discussed: (1) raw band-sequential data (CCT-BT); (2) calibrated data (CCT-AT); and (3) geometrically resampled data (CCT-PT). Each format represents different steps in the process of producing fully corrected TM data. The CCT-BT images are uncorrected radiometrically or geometrically, CCT-AT data are radiometrically calibrated, and CCT-PT images are both radiometrically and geometrically corrected

    TM digital image products for applications

    Get PDF
    The image characteristics of digital data generated by LANDSAT 4 thematic mapper (TM) are discussed. Digital data from the TM resides in tape files at various stages of image processing. Within each image data file, the image lines are blocked by a factor of either 5 for a computer compatible tape CCT-BT, or 4 for a CCT-AT and CCT-PT; in each format, the image file has a different format. Nominal geometric corrections which provide proper geodetic relationships between different parts of the image are available only for the CCT-PT. It is concluded that detector 3 of band 5 on the TM does not respond; this channel of data needs replacement. The empty bin phenomenon in CCT-AT images results from integer truncations of mixed-mode arithmetric operations

    Evaluation of LANDSAT MSS vs TM simulated data for distinguishing hydrothermal alteration

    Get PDF
    The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of hydrothermal alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not identifiable with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of hydrothermal alteration types

    Geologic application of thermal inertia imaging using HCMM data

    Get PDF
    Three test sites in the western US were selected to discriminate among surface geologic materials on the basis of their thermal properties as determined from HCMM data. Attempts to determine quantitatively accurate thermal inertia values from HCMM digital data met with only partial success due to the effects of sensor miscalibrations, radiative transfer in the atmosphere, and varying meteorology and elevation across a scene. In most instances, apparent thermal inertia was found to be an excellent qualitative representation of true thermal inertia. Computer processing of digital day and night HCMM data allowed construction of geologically useful images. At some test sites, more information was provided by data than LANDSAT data. Soil moisture effects and differences in spectrally dark materials were more effectively displayed using the thermal data

    Radiometric calibration and processing procedure for reflective bands on LANDSAT-4 protoflight Thematic Mapper

    Get PDF
    The radiometric subsystem of NASA's LANDSAT-4 Thematic Mapper (TM) sensor is described. Special emphasis is placed on the internal calibrator (IC) pulse shapes and timing cycle. The procedures for the absolute radiometric calibration of the TM channels with a 122-centimeter integrating sphere and the transfer of radiometric calibration from the channels to the IC are reviewed. The use of the IC to calibrate TM data in the ground processing system consists of pulse integration, pulse averaging, IC state identification, linear regression analysis, and histogram equalization. An overview of the SCROUNGE-era (before August 1983) method is presented. Procedural differences between SCROUNGE and the TIPS-era (after July 1983) and the implications of these differences are discussed

    Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    Get PDF
    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band

    Evaluation of thermal data for geologic applications

    Get PDF
    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data

    Commutator Leavitt path algebras

    Full text link
    For any field K and directed graph E, we completely describe the elements of the Leavitt path algebra L_K(E) which lie in the commutator subspace [L_K(E),L_K(E)]. We then use this result to classify all Leavitt path algebras L_K(E) that satisfy L_K(E)=[L_K(E),L_K(E)]. We also show that these Leavitt path algebras have the additional (unusual) property that all their Lie ideals are (ring-theoretic) ideals, and construct examples of such rings with various ideal structures.Comment: 24 page

    The detection of geothermal areas from Skylab thermal data

    Get PDF
    Skylab-4 X-5 thermal data of the geysers area was analyzed to determine the feasibility of using midday Skylab images to detect geothermal areas. The hottest ground areas indicated on the Skylab image corresponded to south-facing barren or sparsely vegetated slopes. A geothermal area approximately 15 by 30 m coincided with one of the hottest areas indicated by Skylab. This area could not be unambiguously distinguished from the other areas which are believed to be hotter than their surroundings as a result of their topography, and micrometeorological conditions. A simple modification of a previous thermal model was performed and the predicted temperatures for the hottest slopes using representative values was in general agreement with the observed data. It is concluded that data from a single midday Skylab pass cannot be used to locate geothermal areas
    • …
    corecore