407 research outputs found

    Suspensions Thermal Noise in the LIGO Gravitational Wave Detector

    Full text link
    We present a calculation of the maximum sensitivity achievable by the LIGO Gravitational wave detector in construction, due to limiting thermal noise of its suspensions. We present a method to calculate thermal noise that allows the prediction of the suspension thermal noise in all its 6 degrees of freedom, from the energy dissipation due to the elasticity of the suspension wires. We show how this approach encompasses and explains previous ways to approximate the thermal noise limit in gravitational waver detectors. We show how this approach can be extended to more complicated suspensions to be used in future LIGO detectors.Comment: 28 pages, 13 figure

    QND and higher order effects for a nonlinear meter in an interferometric gravitational wave antenna

    Get PDF
    A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector were proposed recently by Braginsky and Khalili . Their method is based on using a nonlinear medium inside a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer's standing optical wave. This paper proposes a quantum nondemolition (QND) scheme that could be realistically used for such a readout device and discusses a "fundamental" sensitivity limit imposed by a higher order optical effect.Comment: LaTex, 17 pages, 3 figure

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    To the practical design of the optical lever intracavity topology of gravitational-wave detectors

    Full text link
    The QND intracavity topologies of gravitational-wave detectors proposed several years ago allow, in principle, to obtain sensitivity significantly better than the Standard Quantum Limit using relatively small anount of optical pumping power. In this article we consider an improved more ``practical'' version of the optical lever intracavity scheme. It differs from the original version by the symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it provides the means to inject optical pumping inside the scheme without increase of optical losses. We consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity topologies. Two variants of the local meter are analyzed, which are based on the spectral variation measurement and on the Discrete Sampling Variation Measurement, correspondingly. The former one, while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain the best sensitivity and thus can be considered as an ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of view search of new methods of mechanical QND measurements probably based on improved DSVM scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.Comment: 27 pages, 6 figure

    Past and future gauge in numerical relativity

    Full text link
    Numerical relativity describes a discrete initial value problem for general relativity. A choice of gauge involves slicing space-time into space-like hypersurfaces. This introduces past and future gauge relative to the hypersurface of present time. Here, we propose solving the discretized Einstein equations with a choice of gauge in the future and a dynamical gauge in the past. The method is illustrated on a polarized Gowdy wave.Comment: To appear in Class Quantum Grav, Let

    Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Get PDF
    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40meter proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.

    Scattering of Woods-Saxon Potential in Schrodinger Equation

    Full text link
    The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heun's function. These results are also studied for the constant mass case in detail.Comment: 14 page

    Speed Meter As a Quantum Nondemolition Measuring Device for Force

    Get PDF
    Quantum noise is an important issue for advanced LIGO. Although it is in principle possible to beat the Standard Quantum Limit (SQL), no practical recipe has been found yet. This paper dicusses quantum noise in the context of speedmeter-a devise monitoring the speed of the testmass. The scheme proposed to overcome SQL in this case might be more practical than the methods based on monitoring position of the testmass.Comment: 7 pages of RevTex, 1 postscript figur

    Data analysis of gravitational-wave signals from spinning neutron stars. II. Accuracy of estimation of parameters

    Full text link
    We examine the accuracy of estimation of parameters of the gravitational-wave signals from spinning neutron stars that can be achieved from observations by Earth-based laser interferometers. We consider a model of the signal consisting of two narrowband components and including both phase and amplitude modulation. We calculate approximate values of the rms errors of the parameter estimators using the Fisher information matrix. We carry out extensive Monte Carlo simulations and obtain cumulative distribution functions of rms errors of astrophysically interesting parameters: amplitude of the signal, wobble angle, position of the source in the sky, frequency, and spindown coefficients. We consider both all-sky searches and directed searches. We also examine the possibility of determination of neutron star proper motion. We perform simulations for all laser-interferometric detectors that are currently under construction and for several possible lengths of the observation time and sizes of the parameter space. We find that observations of continuous gravitational-wave signals from neutron stars by laser-interferometric detectors will provide a very accurate information about their astrophysical properties. We derive several simplified models of the signal that can be used in the theoretical investigations of the data analysis schemes independently of the physical mechanisms generating the gravitational-wave signal.Comment: LaTeX, 34 pages, 15 figures, submitted to Phys. Rev.

    Colliding Black Holes: The Close Limit

    Get PDF
    The problem of the mutual attraction and joining of two black holes is of importance as both a source of gravitational waves and as a testbed of numerical relativity. If the holes start out close enough that they are initially surrounded by a common horizon, the problem can be viewed as a perturbation of a single black hole. We take initial data due to Misner for close black holes, apply perturbation theory and evolve the data with the Zerilli equation. The computed gravitational radiation agrees with and extends the results of full numerical computations.Comment: 4 pages, Revtex, 3 postscript figures included, CGPG-94/2-
    • …
    corecore