169 research outputs found

    Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation phase

    Get PDF
    Wendelstein 7-X is the first comprehensively optimized stellarator aiming at good confinement with plasma parameters relevant to a future stellarator power plant. Plasma operation started in 2015 using a limiter configuration. After installing an uncooled magnetic island divertor, extending the energy limit from 4 to 80 MJ, operation continued in 2017. For this phase, the electron cyclotron resonance heating (ECRH) capability was extended to 7 MW, and hydrogen pellet injection was implemented. The enhancements resulted in the highest triple product (6.5 × 1019 keV m-3 s) achieved in a stellarator until now. Plasma conditions [Te(0) ≈ Ti(0) ≈ 3.8 keV, τE &gt; 200 ms] already were in the stellarator reactor-relevant ion-root plasma transport regime. Stable operation above the 2nd harmonic ECRH X-mode cutoff was demonstrated, which is instrumental for achieving high plasma densities in Wendelstein 7-X. Further important developments include the confirmation of low intrinsic error fields, the observation of current-drive induced instabilities, and first fast ion heating and confinement experiments. The efficacy of the magnetic island divertor was instrumental in achieving high performance in Wendelstein 7-X. Symmetrization of the heat loads between the ten divertor modules could be achieved by external resonant magnetic fields. Full divertor power detachment facilitated the extension of high power plasmas significantly beyond the energy limit of 80 MJ.</p

    Towards a new image processing system at Wendelstein 7-X:From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors.</p

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X.EURATOM 63305

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    154 GHz Collective Thomson Scattering in LHD

    Get PDF
    Collective Thomson scattering (CTS) was developed by using a 154 GHz gyrotron, and the first data has been obtained. Already, 77 GHz CTS has worked successfully. However, in order to access higher density region, 154 GHz option enhances the usability that reduces the refraction effect, which deteriorates in the local measurements. The system in the down converted frequency was almost identical to the system for 77 GHz. Probing beam, a notch filter, a mixer, and a local oscillator in the receiver system for 77 GHz option were replaced to those for the 154 GHz option. 154 GHz gyrotron was originally prepared for the second harmonic electron cyclotron heating (ECRH) at 2.75 T. However, scattering signal was masked by the second harmonic electron cyclotron emission (ECE) at 2.75 T. Therefore, 154 GHz CTS was operated at 1.375 T with fourth harmonic ECE, and an acceptable signal to noise ratio was obtained. There is a signature of fast ion components with neutral beam (NB) injection. In addition, the CTS spectrum became broader in hydrogen discharge than in deuterium discharge, as the theoretical CTS spectrum expects. This observation indicates a possibility to identify ion species ratio by the 154 GHz CTS diagnostic

    Anatomic mapping of the collateral branches of the external carotid artery with regard to daily clinical practice

    Get PDF
    Background: To identify the anatomical variations of the main branches of the external carotid artery (lingual, facial, occipital, ascending pharyngeal and sternocleidomastoid), giving information about the calibers and origins with the aim of creating a new classification useful in clinical practice. Material and methods: 193 human embalmed body-donors were dissected. The data collected were analyzed using the Chi² test. The results of previous studies were reviewed. Results: The majority of the anterior arterial branches (superior thyroid, facial and lingual artery) were observed with an independent origin, respectively, classified as pattern I (80.83%, 156/193). In 17.62% (34/193) a linguofacial trunk, pattern II, has been observed, only in 1,04% (2/193) a thyrolingual trunk, pattern III, has been found and in one case (1/193, 0.52%) one thyrolinguofacial trunk, pattern IV, was found. Depending on the posterior branches (occipital and ascending pharyngeal), four different types could be determined: type a, the posterior arteries originated independently, type b, the posterior arteries originated in a common trunk, type c, the ascending pharyngeal artery was absent, type d, the occipital artery was absent. Conclusion: Anatomical variations in these arteries are relevant in daily clinical practice due to growing applications, e.g., in Interventional Radiology techniques. Knowledge of these anatomical references could help clinicians in the interpretation of the carotid system

    Deuterium temperature, drift velocity, and density measurements in non-Maxwellian plasmas at ASDEX Upgrade

    Get PDF
    We measure the deuterium density, the parallel drift velocity, and parallel and perpendicular temperatures (T∥, T⊥) in non-Maxwellian plasmas at ASDEX Upgrade. This is done by taking moments of the ion velocity distribution function measured by tomographic inversion of five simultaneously acquired spectra of Dα-light. Alternatively, we fit the spectra using a bi-Maxwellian distribution function. The measured kinetic temperatures (T∥ = 9 keV, T⊥ = 11 keV) reveal the anisotropy of the plasma and are substantially higher than the measured boron temperature (7 keV). The Maxwellian deuterium temperature computed with TRANSP (6 keV) is not uniquely measurable due to the fast ions. Nevertheless, simulated kinetic temperatures accounting for fast ions based on TRANSP (T∥= 8.3 keV, T⊥ = 10.4 keV) are in excellent agreement with the measurements. Similarly, the Maxwellian deuterium drift velocity computed with TRANSP (300 km s-1) is not uniquely measurable, but the simulated kinetic drift velocity accounting for fast ions agrees with the measurements (400 km s-1) and is substantially larger than the measured boron drift velocity (270 km s-1). We further find that ion cyclotron resonance heating elevates T∥ and T⊥ each by 2 keV without evidence for preferential heating in the Dα spectra. Lastly, we derive an expression for the 1D projection of an arbitrarily drifting bi-Maxwellian onto a diagnostic line-of-sight
    • …
    corecore