92 research outputs found

    Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma

    Get PDF
    This work presents results of in vivo and in situ measurements of hepatocellular carcinoma by a developed optical biopsy system. Here, we describe the technical details of the implementation of fluorescence lifetime and diffuse reflectance measurements by the system, equipped with an original needle optical probe, compatible with the 17.5G biopsy needle standard. The fluorescence lifetime measurements observed by the setup were verified in fresh solutions of NADH and FAD++, and then applied in a murine model for the characterisation of inoculated hepatocellular carcinoma (HCC) and adjacent liver tissue. The technique, applied in vivo and in situ and supplemented by measurements of blood oxygen saturation, made it possible to reveal statistically significant transformation in the set of measured parameters linked with the cellular pools of NADH and NADPH. In the animal model, we demonstrate that the characteristic changes in registered fluorescent parameters can be used to reliably distinguish the HCC tissue, liver tissue in the control, and the metabolically changed liver tissues of animals with the developed HCC tumour. For further transition to clinical applications, the optical biopsy system was tested during the routing procedure of the PNB in humans with suspected HCC. The comparison of the data from murine and human HCC tissues suggests that the tested animal model is generally representative in the sense of the registered fluorescence lifetime parameters, while statistically significant differences between their absolute values can still be observed

    Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity

    Get PDF
    All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on β-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on β-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against β-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against β-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents

    Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes

    Get PDF
    The transcription factor Nrf2 and its repressor Keap1 mediate cell stress adaptation by inducing expression of genes regulating cellular detoxification, antioxidant defence and energy metabolism. Energy production and antioxidant defence employ NADH and NADPH respectively as essential metabolic cofactors; both are generated in distinct pathways of glucose metabolism, and both pathways are enhanced by Nrf2 activation. Here, we examined the role of Nrf2 on glucose distribution and the interrelation between NADH production in energy metabolism and NADPH homeostasis using glio-neuronal cultures isolated from wild-type, Nrf2-knockout and Keap1-knockdown mice. Employing advanced microscopy imaging of single live cells, including multiphoton fluorescence lifetime imaging microscopy (FLIM) to discriminate between NADH and NADPH, we found that Nrf2 activation increases glucose uptake into neurons and astrocytes. Glucose consumption is prioritized in brain cells for mitochondrial NADH and energy production, with a smaller contribution to NADPH synthesis in the pentose phosphate pathway for redox reactions. As Nrf2 is suppressed during neuronal development, this strategy leaves neurons reliant on astrocytic Nrf2 to maintain redox balance and energy homeostasis

    Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.

    Get PDF
    The ordered assembly of amyloidogenic proteins causes a wide spectrum of common neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. These diseases share common features with prion diseases, in which misfolded proteins can self-replicate and transmit disease across different hosts. Deciphering the molecular mechanisms that underlie the amplification of aggregates is fundamental for understanding how pathological deposits can spread through the brain and drive disease. Here, we used single-molecule microscopy to study the assembly and replication of tau at the single aggregate level. We found that tau aggregates have an intrinsic ability to amplify by filament fragmentation, and determined the doubling times for this replication process by kinetic modeling. We then simulated the spreading time for aggregates through the brain and found this to be in good agreement with both the observed time frame for spreading of pathological tau deposits in Alzheimer's disease and in experimental models of tauopathies. With this work we begin to understand the physical parameters that govern the spreading rates of tau and other amyloids through the human brain

    Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading.

    Get PDF
    The protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation. Here, by a combination of single-molecule fluorescence measurements and kinetic analysis, we find that the reaction in solution involves two unimolecular structural conversion steps, from the disordered to more compact oligomers and then to fibrils, which can elongate by further monomer addition. We have obtained individual rate constants for these key microscopic steps by applying a global kinetic analysis to both the decrease in the concentration of monomeric protein molecules and the increase in oligomer concentrations over a 0.5-140-µM range of αS. The resulting explicit kinetic model of αS aggregation has been used to quantitatively explore seeding the reaction by either the compact oligomers or fibrils. Our predictions reveal that, although fibrils are more effective at seeding than oligomers, very high numbers of seeds of either type, of the order of 10(4), are required to achieve efficient seeding and bypass the slow generation of aggregates through primary nucleation. Complementary cellular experiments demonstrated that two orders of magnitude lower numbers of oligomers were sufficient to generate high levels of reactive oxygen species, suggesting that effective templated seeding is likely to require both the presence of template aggregates and conditions of cellular stress.We thank Dr. Nadia Shivji and Beata Blaszczyk for ɑS protein expression, Dr. Peter Jönsson for help with preliminary TIRFM imaging experiments, Chris Taylor for help with preliminary autodilution experiments and Prof. Michel Goedert for critical reading of the manuscript. M.I. is funded by Dr. Tayyeb-Hussain Scholarship. G.A.G. is funded by the Schiff Foundation . S.G. is funded through a Wellcome Trust Intermediate Clinical Fellowship. Funding from the Frances and Augustus Newman Foundation, the European Research Council and the Biothechnology and Biophysical Sciences Research Council is gratefully acknowledged.This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/10.1073/pnas.152412811

    Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease

    Get PDF
    Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood

    Synthetic Fragments of Receptor for Advanced Glycation End Products Bind Beta-Amyloid 1–40 and Protect Primary Brain Cells From Beta-Amyloid Toxicity

    Get PDF
    Receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of Alzheimer’s disease. We have previously revealed that RAGE fragment sequence (60–76) and its shortened analogs sequence (60–70) and (60–65) under intranasal insertion were able to restore memory and improve morphological and biochemical state of neurons in the brain of bulbectomized mice developing major AD features. In the current study, we have investigated the ability of RAGE peptide (60–76) and five shortened analogs to bind beta-amyloid (Aβ) 1–40 in an fluorescent titration test and show that all the RAGE fragments apart from one [sequence (65–76)] were able to bind Aβ in vitro. Moreover, we show that all RAGE fragments apart from the shortest one (60–62), were able to protect neuronal primary cultures from amyloid toxicity, by preventing the caspase 3 activation induced by Aβ 1–42. We have compared the data obtained in the present research with the previously published data in the animal model of AD, and offer a probable mechanism of neuroprotection of the RAGE peptide

    Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration

    Get PDF
    Acknowledgements We are indebted to Jim Humphries, JennyCorrigan, LizDarley, Elizabeth Joynson, Natalie Walters, Sara Wells and the whole necropsy, histology, genotyping and MLC ward 6 teams at MRC Harwell for excellent technical assistance. We thank the staff of the WTSI Illumina Bespoke Team for the RNA-seq data, the Sanger Mouse Genetics Project for the initial mouse characterization and Dr David Adams for critical reading of the manuscript. We also thank KOMP for the mouse embryonic stem cells carrying the knockout first promoter-less allele (tm1a(KOMP)Wtsi) within Zfp016. Conflict of Interest statement. None declared. Funding This work was funded by the UK Medical Research Council (MRC) to A.A.-A. and a Motor Neurone Disease Association (MNDA) project grant to A.A.-A. and EMCF. D.L.H.B. is a Wellcome Trust Senior Clinical Scientist Fellow and P.F. is a MRC/MNDA Lady Edith Wolfson Clinician Scientist Fellow. Funding to pay the Open Access publication charges for this article was provided by the MRC grant number: MC_UP_A390_1106.Peer reviewedPublisher PD

    Structural characterization of toxic oligomers that are kinetically trapped during alpha-synuclein fibril formation

    Get PDF
    This is the author accepted manuscript. The final version is avialble via PNAS at http://www.pnas.org/content/112/16/E1994.long#ack-1.We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species.We thank Dr. Katherine Stott, from the Biophysics Facility, Department of Biochemistry, University of Cambridge, for her assistance in using these facilities. This work was supported by the Agency for Science, Technology and Research, Singapore (S.W.C.), the “La Caixa” foundation (S.D.), Wellcome/MRC (Medical Research Council) Parkinson’s Disease Consortium Grant WT089698 (to E.D. and N.W.W.), National Institute for Health Research Biomedical Research Centres funding at University College London (to N.W.W.), the BBSRC through Grants BB/H003843/1 (to M.O.) and BB/E019927/1 (to C.M.D.), the Spanish Ministry of Economy and Competitiveness through Grants SAF 2012-39720 (to C.R.), BFU2013-44202 (to J.M.V.), and BIO2011-28941-C03-03 (to C.A. and G.R.), the Spanish Ministry of Health with cofunding by The European Regional Development Fund through Grant CP10/00527 (to C.R.), the Madrid Regional Government through Grant S2013/MIT-2807 (to J.M.V.), Parkinson’s UK through Grant H-0903 (to T.G.), the Wellcome Trust, the Leverhulme Trust, the European Commission through project LSHM-CT-2006-037525 (to C.M.D.), the Medical Research Council through Grant MRC G1002272 (to E.J.D.-G. and C.M.D.), and the Engineering and Physical Sciences Research Council (C.M.D.). A.Y.A. was a Parkinson’s UK Senior Research Fellow. N.C. is a Royal Society Research Fellow and also acknowledges financial support by the Human Frontier Science Program from Long-Term Fellowship LT000795/2009
    corecore