141 research outputs found

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Effects of tunable excitation in carotenoids explained by the vibrational energy relaxation approach

    Get PDF
    V. B. acknowledges funding by the Leverhulme Trust Research Project Grant RPG-2015-337. J. H. and C. N. L. acknowledge funding by the Austrian Science Fund (FWF): START project Y 631-N27. D. A. acknowledges support by the Research Council of Lithuania (No MIP-090/2015). G. C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). G. C. and J. H. acknowledge funding by Laserlab-Europe (EU-H2020 654148)

    Sum-over-states vs quasiparticle pictures of coherent correlation spectroscopy of excitons in semiconductors; femtosecond analogues of multidimensional NMR

    Full text link
    Two-dimensional correlation spectroscopy (2DCS) based on the nonlinear optical response of excitons to sequences of ultrafast pulses, has the potential to provide some unique insights into carrier dynamics in semiconductors. The most prominent feature of 2DCS, cross peaks, can best be understood using a sum-over-states picture involving the many-body eigenstates. However, the optical response of semiconductors is usually calculated by solving truncated equations of motion for dynamical variables, which result in a quasiparticle picture. In this work we derive Green's function expressions for the four wave mixing signals generated in various phase-matching directions and use them to establish the connection between the two pictures. The formal connection with Frenkel excitons (hard-core bosons) and vibrational excitons (soft-core bosons) is pointed out.Comment: Accepted to Phys. Rev.

    Partially-Time-Ordered Schwinger-Keldysh Loop Expansion of Coherent Nonlinear Optical Susceptibilities

    Full text link
    A compact correlation-function expansion is developed for nth order optical susceptibilities in the frequency domain using the Keldysh-Schwinger loop. By not keeping track of the relative time ordering of bra and ket interactions at the two branches of the loop, the resulting expressions contain only n+1 basic terms, compared to the 2n terms required for a fully time-ordered density matrix description. Superoperator Green's function expressions for the nth order suscpeptibility derived using both expansions reflect different types of interferences between pathways .These are demonstrated for correlation-induced resonances in four wave mixing signals.Comment: article: 19 pages (preprint style!; including figures) ``paper.tex'' figures:

    Excitation Dynamics and Relaxation in a Molecular Heterodimer

    Full text link
    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer

    Probing Interband Coulomb Interactions in Semiconductor Nanocrystals with 2D Double-Quantum Coherence Spectroscopy

    Full text link
    Using previously developed exciton scattering model accounting for the interband, i.e., exciton-biexciton, Coulomb interactions in semiconductor nanocrystals (NCs), we derive a closed set of equations for 2D double-quantum coherence signal. The signal depends on the Liouville space pathways which include both the interband scattering processes and the inter- and intraband optical transitions. These processes correspond to the formation of different cross-peaks in the 2D spectra. We further report on our numerical calculations of the 2D signal using reduced level scheme parameterized for PbSe NCs. Two different NC excitation regimes considered and unique spectroscopic features associated with the interband Coulomb interactions are identified.Comment: 11 pages, 5 figure

    Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature

    Full text link
    Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assemblies. However, single-molecule techniques to access ultrafast coherences at physiological conditions were not available so far. Here we show by employing femtosecond pulse-shaping techniques that quantum coherences in single organic molecules can be created, probed, and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi-oscillations and control the coherent superposition state in a single molecule, thus performing a basic femtosecond single-qubit operation at room temperature

    Origin of Long Lived Coherences in Light-Harvesting Complexes

    Get PDF
    A vibronic exciton model is developed to investigate the origin of long lived coherences in light-harvesting complexes. Using experimentally determined parameters and uncorrelated site energy fluctuations, the model predicts oscillations in the nonlinear spectra of the Fenna-Matthews-Olson (FMO) complex with a dephasing time of 1.3 ps at 77 K. These oscillations correspond to the coherent superposition of vibronic exciton states with dominant contributions from vibrational excitations on the same pigment. Purely electronic coherences are found to decay on a 200 fs timescale.Comment: 4 pages, 2 figure

    Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system

    Get PDF
    The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a closed (unitarily evolving) and non-interacting Kohn-Sham system. This potentially offers a great advantage over previous approaches to OQS-TDDFT, since with suitable functionals one could obtain the dissipative open-systems dynamics by simply propagating a set of Kohn-Sham orbitals as in usual TDDFT. However, the properties and exact conditions of such open-systems functionals are largely unknown. In the present article, we examine a simple and exactly-solvable model open quantum system: one electron in a harmonic well evolving under the Lindblad master equation. We examine two different representitive limits of the Lindblad equation (relaxation and pure dephasing) and are able to deduce a number of properties of the exact OQS-TDDFT functional. Challenges associated with developing approximate functionals for many-electron open quantum systems are also discussed.Comment: 12 pages, 9 figure
    • …
    corecore