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Abstract Carotenoids are fundamental building blocks of
natural light harvesters with convoluted and ultrafast energy
deactivation networks. In order to disentangle such com-
plex relaxation dynamics, several studies focused on tran-
sient absorption measurements and their dependence on the
pump wavelength. However, such findings are inconclusive
and sometimes contradictory. In this study, we compare in-
ternal conversion dynamics in f-carotene, pumped at the
first, second and third vibronic progression peak. Instead
of employing data fitting algorithms based on global anal-
ysis of the transient absorption spectra, we apply a fully
quantum mechanical model to treat the high-frequency sym-
metric carbon-carbon (C=C and C-C) stretching modes ex-
plicitly. This model successfully describes observed popula-
tion dynamics as well as spectral line shapes in their time-
dependence and allows us to reach two conclusions: Firstly,
the broadening of the induced absorption upon excess ex-
citation is an effect of vibrational cooling in the first ex-
cited state (S1). Secondly, the internal conversion rate be-
tween the second excited state (S2) and S crucially depends
on the relative curve displacement. The latter point serves
as a new perspective on solvent- and excitation wavelength
dependent experiments and lifts contradictions between sev-
eral studies found in literature.
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Introduction

Carotenoids are ubiquitous natural pigment molecules found
in plants, bacteria and algae (Young and Britton, 1993; Frank
et al, 1999; van Amerongen et al, 2000). They perform a
number of functions ranging from light-harvesting in the
green-blue spectral region to photoprotection by quenching
(bacterio-)chlorophyll triplet states or singlet oxygen (Frank
and Cogdell, 1996; Polivka and Sundstrom, 2004). Despite
the huge diversity of this pigment class, the majority of caro-
tenoids are characterized by several common properties. They
absorb light into their second excited singlet state S, be-
cause the first excited singlet state S is optically inaccessi-
ble due to symmetry reasons (Polivka and Sundstrom, 2004).
S decays into S; with a time constant of ~ 100 — 200fs,
while S further relaxes to the ground state on a time scale
from several to tens of picoseconds. This picture is consis-
tent with most of the experimental findings, however, some
evidence including quantum chemical calculations suggests
involvement of additional optically dark states (Polivka and
Sundstrom, 2009).

In order to understand the intricate photophysics of caro-
tenoids, transient absorption (TA) spectroscopy has been per-
formed systematically on samples of various chain lengths,
in different solvents, at different excitation wavelengths, tem-
perature and combinations of these parameters (Larsen et al,
2003; Jailaubekov et al, 2011; Staleva et al, 2015; Takaya
and Iwata, 2014). Each of these series provide valuable in-
formation.

Excitation energy dependence of carotenoid relaxation
dynamics is one of the unsolved problems, which has been
studied previously in several works (Nakamura et al, 2004;
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Billsten et al, 2005; Kosumi et al, 2005; Nakamura et al,
2006; Zuo et al, 2007; Jailaubekov et al, 2011; Staleva et al,
2015). The attempts to determine the general dependence
of S lifetime on excess excitation energy failed to yield an
unambiguous answer. All possible trends can be found in lit-
erature, from speed-up (Billsten et al, 2005; Zuo et al, 2007)
and slow-down of relaxation (Kosumi et al, 2005; Kloz et al,
2012) to no change at all (Staleva et al, 2015).

In this paper we focus on the overall relaxation dynam-
ics of B-carotene as a function of the initially excited vi-
bronic levels on S,, both theoretically and experimentally.
We use a model called Vibrational Energy Relaxation Ap-

proach (VERA), which considers four electronic singlet states,
S0, S1, S2 and S),, and treats two high-frequency carbon—carbon

stretching modes (single and double bond) explicitly, while
the other vibrations are included as a bath (Balevicius Jr.
et al, 2015). We previously demonstrated that the inclusion
of vibrational levels on states S, S» and S, can adequately
describe the TA spectra of 3-carotene and its artificial deriva-

tive. By adding vibrational substructure to the electronic ground

state, VERA readily explains the S* feature found in TA
spectra (Balevicius Jr. et al, 2016). In both cases a number
of parameters had to be determined by fitting the modeled
spectra to the experiment. Some of those parameters can be
verified by or determined from other experiments, e.g., the
line-shape of ground state bleach (GSB) is obtained from
the linear absorption, and the frequencies of the stretching
modes are known from the Raman spectra. The crucial pa-
rameters determining the internal conversion dynamics be-
tween 7 and S are the energy gap between the states, the
displacements between the harmonic oscillators represent-
ing the two vibrational modes, and the spectral density of
the bath. While the latter cannot be measured directly, e.g.,
(Wendling et al, 2000), the energy gap and the displace-
ments can be obtained simultaneously from a single experi-
ment, namely TA in the near-infrared (NIR) region covering
the S to S, transition energy (Polivka et al, 2001; Polivka
and Sundstrom, 2004). While we have used literature-based
values for these parameters in our earlier reports, in this
study we extract them from experimental TA NIR spectra
of B-carotene in two solvents, fixing the maximally consis-
tent set of model parameters. Explicit modeling of internal
conversion allows us to explain the seemingly inconsistent
results from pump wavelength dependent studies found in
literature, both in TA and fluorescence excitation experi-
ments. We show that curve displacement between S, and
S is a crucial parameter for the internal conversion between
the two states. Using VERA, we explain the pump wave-
length dependence of this ultrafast population transfer pro-
cess (So — S1) without the need to invoke optically dark in-
termediate states (Polivka and Sundstrom, 2009).
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Fig. 1 Absorption spectrum of f-carotene in cyclohexane. Full line
shows the experimental data, dashed line corresponds to model calcu-
lations. The underlying stick spectrum is shown, where the intensities
correspond to the Franck—Condon factors of the specific mode combi-
nations (see text for details). The excitation pulses used in the exper-
iment are also shown at 20000 cm™!, 22200 cm™! and 23250 cm™!
(corresponding to 500 nm, 450 nm and 430 nm respectively)

Model and methods
Vibrational energy relaxation approach

Our previously proposed scheme for calculating TA spectra
of carotenoids, VERA, is given in detail in (Balevicius Jr.
et al, 2015). Essentially, the TA spectrum is shaped by four
electronic states coupled to two vibrational modes. The spec-
trum consists of three components: induced absorption (IA),
stimulated emission (SE) and GSB. The IA component is
described as the following sum of products:

Ana (@,1) = Y I (@) (1). 1)

1

Here n%(t) is the population of the i’th vibronic state, |iz),

and Il-”b (w) denotes the sum of spectral profiles associated
with the relevant optical transitions originating from the i’th
state (vide infra). The vibronic state |i ) is defined as the
direct product of an electronic and two corresponding vibra-
tional wave-vectors: |ip) = |Si)|a)1]b)2. Here, |S;) denotes
one of the three electronic states, So, S; and S, from which
the absorption can take place, and the indices a/b denote the
numbers of quanta in the C=C / C-C stretching modes with
frequencies @; = 1522 cm™! and @, = 1156 cm ™!, respec-
tively.

In this paper, the sums over indices, Y ;, implicitly in-
clude the summation over these vibrational indices a or b,
with the exception of the electronic ground state, where only
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one vibronic level |Ogy) is considered. (In (Balevi¢ius Jr.
et al, 2016) this restriction is lifted.) This is justified, given
the focus of the current work on S, — S| relaxation. Hence
we don’t include the implicit summation for i = 0 in Eq. 1,

AA(@,1) = Y I (@) (1) — E(0,6) — 1 (0) Y nf® (1)
i#0 i#0

neglecting the induced absorption from vibrationally hot ground In the following we refer to the terms on the right hand side

state levels. We have demonstrated that the inclusion of such
terms enables the description of the S* signal in carotenoids
longer than fB-carotene studied here (Balevicius Jr. et al,
2016).

The spectral shape term, If”’(a)), has the following struc-
ture:

()= Y fij(a,b,d V)o(0—@j—0pp 0y, Awij). (2)
j>i

Here, 6(®, A®) determines the line-shape of an individual
optical transition i — j (either Gaussian or Lorentzian of
FWHM Aw), w;; denotes the purely electronic energy gap
(the 0-0 transition), while @, ;, , )y = @i (d' —a) + w (b' —
b) denotes the energy gap (i = 1) between the vibrational
sub-levels of the electronic states i (indices a, b) and j (primed
indices @, b'). The function fij(a,b,d’,b") describes the am-
plitude of the transition and reads:

fij(a’b’a/’b/) = |:uij|2<a|a/>%<b|b/>%v (3)

where, ;; is the electronic transition dipole moment of the
i — j transition, and (ala’)y, (b|b'), are the Franck—Condon
(FC) factors describing the overlap between the vibrational
wave-functions. The FC factors are determined by the di-
mensionless displacements, d;’ and d5, between the poten-
tial energy surfaces of the two stretching modes (May and
Kiihn, 2004).

As for the other optical processes, using the above defi-
nitions we recognize that the absorption spectrum is given
by I°(w) and GSB merely flips its sign. Since the only
strongly emitting state in carotenoids is S», SE can be repre-
sented by the term

E(o,t) =1 (0)n$(t), &)

where the tilde means that E‘b(w) is given by Eq. 2 with
the exception that now j < i (transition to lower lying vi-
bronic levels) and w;; — @;; — 6ws;., where dws;. is the
Stokes shift. Effectively this means that the emission from
the lowest lying vibronic level on S, is the mirror image of
the absorption spectrum [J°(®), red-shifted by the Stokes
shift.

Finally the TA spectrum, which is essentially a differ-
ence spectrum, is calculated as:

AA(®,1) = Ajng.(0,1) — E(@,1) — I (). (5)

Alternatively, rearranging the terms we obtain

as IA, SE and GSB, accordingly.

Population relaxation is governed by a master equation,
which is explicitly presented in the Supplementary Informa-
tion of (Balevicius Jr. et al, 2015). In short, we start from a
Hamiltonian comprising two blocks of vibronic levels |1 )
and |2,5). The radiationless decay is caused by the bath-
induced off-diagonal fluctuations (Valkunas et al, 2013), where
the bath is defined as solvent phonons plus all the remain-
ing vibrational modes of the carotenoid. The fluctuations are
described by the correlation functions of the bath. Based on
this Hamiltonian, equations of motion are derived within the
secular and Markov approximations.

For the initial condition describing the excitation of the
carotenoid we include temporal and spectral properties of
the pump pulse via a pumping term, p,,(¢), in the equations
of motion:

dab

anZ (t> = Pab (t» wp) s (6)

pump

where @y, is the center frequency of the chosen pump pulse,
and the (normalized) pumping term itself reads:

pab(t7 a)) = F(tv Tp)f02(0,0,6l,b)0'(w— W2 — a)0,0,a,ba A(Dp),
@)

Here, both the temporal and spectral parts, I'(z, 7,) and 6(@, Aw,),

are Gaussians of widths 7, and Ay, accordingly. The in-
voked approximations imply that the possible coherent ef-
fects (Dobryakov et al, 2005; Christensson et al, 2010) are
neglected and the calculated TA at times ¢ < 7, should be
treated with caution.

Transient absorption measurements in NIR and VIS

The ultrafast TA spectroscopy setup is driven by an ampli-
fied Ti:sapphire laser (Coherent Libra) giving 4 mJ, 100 fs
pulses at 800 nm central wavelength and 1 kHz repetition
rate. A part of the pulse energy is used to drive a non-collinear
optical parametric amplifier (NOPA) (Cerullo and Silvestri,
2003) to produce the pump pulses, while the probe pulses
are generated through tight focusing of a small fraction of
the 800 nm laser output into a 3 mm thick CaF, plate, pro-
ducing a white light continuum from 350 to 750 nm for
probing in the visible. For probing in the NIR, the CaF, plate
was replaced by a 6 mm thick YAG plate, yielding a probe
spectrum spanning from 860 to 1400 nm. In order to be able
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Table 1 Model parameters used in fitting the line-shapes.

transition ~ solvent @ (cm™') 4  df  Aw,cm!
So —+ S> cyclo. 20570 083 0.75 755
S1— Sy cyclo. 17850 0.38  0.39 730
S1— 8 cyclo. 6810 0.78 0.64 4007
So — S» tolu. 19830 0.84 0.73 770
Si—=S  tolu. 6550 08 071 4307

TAIl the optical line-shapes were fitted using Gaussian profiles;
Lorentzian profiles produced better fits for NIR data

to continuously change the pump wavelength from 430 to
490 nm, the NOPA was tuned to the NIR, with pulses be-
tween 860 to 980 nm, and its output was frequency-doubled
with a -barium borate crystal. The pump pulse duration,
measured by autocorrelation, was approximately 70 fs. Af-
ter the sample, the probe spectra were recorded by a spec-
trometer, triggered at the laser repetition rate and capable
of single-shot detection. The pump pulse is modulated by a
chopper at half the laser repetition rate. Transmitted probe
spectra are recorded in the presence (Tpy) and in the ab-
sence (Topr) of the pump. These spectra are processed in
order to get the differential transmission signal as AT /T =
(Ton — Torr) / Torr at every pump—probe delay. For sample
preparation, f3-carotene (Sigma-Aldrich) was dissolved in
either cyclohexane or toluene (HPLC-grade), to yield solu-
tions of less than 0.4 OD maximum absorption in the visible.
Absorption as well as TA measurements were carried out in
a quartz cuvette with 1 mm light path length.

Results
Absorption spectra and induced absorption in the NIR

The absorption spectrum of B-carotene in cyclohexane is
shown in Fig. 1. This is a typical absorption spectrum of
carotenoids expressing a well-resolved progression of vi-
bronic peaks (Polivka and Sundstrom, 2004). The spectrum
in toluene (not shown) is qualitatively very similar, except
for a red-shift discussed below.

An absorption experiment determines the parameters de-
scribing the line-shape of the Sy — S, transition. Because
for carotenoids o = 0.0 we only need to fit @y, d\?, d5°
and Awp, (we chose g, = 1.0 in arbitrary units for scal-
ing). The calculated absorption spectrum 180(0)) is plotted
by the dashed line in Fig. 1; Gaussian line-shapes were used.
The parameters determining the optical transitions are given
in Table 1, along with the parameters for the spectrum in
toluene for comparison. The most notable difference is the
740 cm™! red-shift with respect to the absorption maximum
in cyclohexane.

6 7 8 9 10 11 12
10] v v v —

0.8-. experiment
0.64 model

0.4-

0.2 cyclohexane
0.0 T T T T T

1.0
0.84
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0.0 — ————
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Fig. 2 NIR transient absorption spectra 2 ps after 500 nm excitation.
Experimental data are shown as fuzzy lines. Results in cyclohexane
and toluene are depicted in top and bottom panels, accordingly. Model
calculations are represented by smooth lines

As can be seen, the model accurately describes the first
two peaks, 0-0 and 0-1, but fails at higher frequencies, where
the experimental intensity is larger. It was argued previously
that the high energy spectrum of carotenoids might be in-
fluenced by a distribution of geometrical conformers (Lukes
et al, 2011; Papagiannakis et al, 2006; Hauer et al, 2013;
Chabera et al, 2009), which would not be captured by our
model.

The gray stick spectrum shows the values of the function
f02(0,0,a,b), conf. Eq. 3, at the corresponding wavenum-
bers wg + @ 0,45, normalized to the value fy»(0,0,0,0) (first
peak in the series). The stick spectrum is useful for illustrat-
ing how the selective excitation is achieved. For example,
the 500 nm pulse is only in resonance with the 0-0 peak,
whereas the pulses of shorter wavelength cover several lev-
els within the vibrational progression.

NIR TA spectra for B-carotene in cyclohexane and toluene
after 500 nm excitation are shown in Fig. 2. The spectra
are recorded at 2 ps delay, thus after relaxation from S, to
S1. The signal therefore shows IA from §; to > and is not
contaminated by the induced absorption from S>, which ap-
pears at around 10000 cm~! (Zhang et al, 2001) (this was
checked by observing the monotonic decay of the signal at
the subsequent delay times). The spectrum in cyclohexane
was normalized to the 0-0 peak, while in toluene the 0-1
peak was chosen because of smoothness and strength sim-
ilar to 0-0. The fitting results are shown by black smooth
lines and the fit parameters are given in Table 1; Lorentzian
line-shapes produced a fit of high quality. Interestingly, the
fitting of NIR spectra shows a much better agreement with
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the experiment than the absorption spectra, even though the
0-0 peaks are noisy due to their position at the limit of the
detection spectral window. The high fidelity of the fit can be
attributed to the lack of influence of ground state conformers
at 500 nm excitation. The determined energy gaps @, im-
ply that the S state is positioned at 13760 and 13280 cm ™!
in cyclohexane and toluene, respectively.

TA spectra in the visible

TA spectra of B-carotene in the visible were recorded both
in cyclohexane and toluene. However, as the results in both
solvents are qualitatively identical, only results in cyclohex-
ane are considered further for the sake of clarity. Model cal-
culations were done to fit the entire experimental data set.
To assess the quality of the fit, the TA spectra are shown in
Fig. 3 (experimental data shown in fuzzy lines, model data
shown in smooth lines). Four representative spectra were se-
lected at short (200 and 500 fs) and long (1 and 3 ps) delay
times.

The parameters of the model can be summarized in two
groups: “static parameters” that describe the line-shapes and
“dynamic parameters” governing the population dynamics.
The static parameters taken from the linear absorption fit-
ting were used to calculate SE and GSB components of TA
spectra. For the SE component, a Stokes shift of Scws; =
400cm~! was used as determined from early delay time TA
spectra. The line-shape parameters for the S; — S, transi-
tion were obtained by fitting the TA peak at ~ 18000cm ™!
at long times, i.e., after the vibrational relaxation on S;. A
transition dipole moment ratio toy/Ui, = 1.17 was found.
The dynamic parameters that enter the population transfer
rates are the energy gap @, and displacements d 112, d212, and
also the parameters of the bath (Balevicius Jr. et al, 2015).
The former three values are taken from the NIR data (Ta-
ble 1). The bath is modeled as an overdamped Brownian os-
cillator (May and Kiihn, 2004; Valkunas et al, 2013), which
is parametrized by the relaxation time T = 163fs and the
reorganization energies for both internal conversion, Ai; =
1200cm ™!, and vibrational relaxation, Ay, = 150cm™—!. While
Aic together with the corresponding FC factors governs the
population transfer rates between the vibronic sub-levels on
S, and S;, Ay, determines the vibrational relaxations within
S> and Sp. The relaxation of the Sy state is treated by phe-
nomenologically including its exponential decay with a life-
time of 8.3 ps. The duration of the pump pulse was set to be
T, = 70fs, in agreement with the experimental value. The
parameters are summarized in Table 1.

The spectral evolution in Fig. 3 is typical to carotenoids
in solution (Polivka and Sundstrom, 2004). On the scale
of hundreds of femtoseconds, an IA signal at ~18000cm ™!
is forming, which represents the S; — S, transition. This
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Fig. 3 TA spectra of -carotene in cyclohexane after 500 nm excita-
tion. Experimental data are shown as fuzzy lines, model calculations
are represented by smooth lines

signal reaches its maximum at 1 ps and subsequently mo-
noexponentially decays together with the GSB component
(20000cm~! and above). There are several important de-
tails in this general picture. Firstly, at early times the signal
is broader and slightly red-shifted with respect to the signal
at 1 ps. The narrowing and blue-shifting of the IA is well
known and is attributed to vibrational cooling within S; state
(Andersson and Gillbro, 1995). The narrowing of the sig-
nal in the calculations arises directly from the model, while
the blue-shift of the central frequency of IA was added phe-
nomenologically shifting @y, by 200cm~" in 300 fs. This
time-dependent Stokes shift is associated with all the unac-
counted vibrational modes of the molecule, i.e., other than
the two stretching modes which have been treated explic-
itly. Secondly, the shoulder at ~19500 cm™! has been widely
debated in the literature under the name of the so-called
S* state (Polivka and Sundstrom, 2009; Balevicius Jr. et al,
2016). In the current study this signal decays with the same
lifetime as the main peak of IA at 17850 cm~! and does
not have to be treated as an electronic state additional to Sy
(Niedzwiedzki et al, 2016).

Dependence of the TA spectra on excitation wavelength

By fitting the TA spectra for 500 nm excitation we have de-
termined all the model parameters. To study pump wave-
length dependencies, we calculate TA spectra for different
excitation wavelengths changing just the frequency of the
pump pulse, @, in the pumping term of Eq. 6. The model



Vytautas BaleviCius Jr. et al.

1
1.0 >

0.54

0.04

-0.54

1.0 ——F————1——1——1——

AOD (a.u.)

0.5

0.0

os] experiment

15 16 17 18 19 20 21 22

w (10° cm™)

Fig. 4 TA spectra of f-carotene in cyclohexane at 500 fs delay for
three excitation wavelengths. Top panel shows model calculations, bot-
tom panel shows the experimental results. The arrows indicate the
trends (starting from 500 nm excitation) at specific spectral regions
associated with different vibronic transitions

results at 500 fs delay are shown in the top panel of Fig. 4;
experimental results are shown in the bottom panel.

The arrows in Fig. 4 demonstrate the main trends when
changing pump wavelength between 500 and 430 nm. The
model calculations predict a decrease of the central peak of
IA and simultaneous increase of the wings. However, these
differences in the line-shapes gradually disappear in time.
The IA spectrum has the same converged line-shape at 1 ps,
regardless of the excitation frequency. The experimental re-
sults at 0.5 ps show a notable increase of the blue wing of 1A,
a slight decrease of the main peak and virtually no change in
the red side. We attribute the latter lack of pump wavelength
dependence to the fact that the signal is considerably nois-
ier around 16000 cm~! and below. Moreover, the signal-to-
noise level is lower for shorter wavelength excitations due
to the decreasing power of the pump pulse.

Discussion

From an experimental point of view, the excess excitation
of carotenoids is achieved by tuning the excitation wave-
length to a specific vibronic peak (Fig. 1), leading to the
excitation naming: 0-0, 0—1 or 0-n excitation (Kosumi et al,
2005). In the context of VERA the precise vibrational lev-
els covered by the excitation pulse become important for
an adequate description of ensuing dynamics. The visually
apparent vibronic peaks in the absorption spectrum do not
belong to a single vibrational mode; they are largely a re-
sult of the vibronic progression from two symmetric car-

bon—carbon double- and single-bond (C=C and C-C) stretch-
ing modes (conf., stick spectrum in Fig. 1). Bearing in mind
this internal multi-band structure of the absorption spectrum,
one can specify which vibrational levels are being excited by
a given pulse.

In order to analyze and rationalize the effects of tunable
excitation of carotenoids in both earlier reports and the cur-
rent study, we extend VERA by an exact treatment of ini-
tial populations after excitation (Eqs. 7 and 8). We primar-
ily consider shorter wavelength excitations of carotenoids
which populate higher-lying vibronic levels of S>. Addition-
ally we use the experimental NIR TA data to minimize the
number of the free parameters. Our findings can be analyzed
most efficiently by grouping them into two interdependent
yet distinct sets of results. Firstly, we discuss the change of
the TA line-shape upon excess excitation. Secondly, we an-
alyze the effect of tunable excitation on the lifetime of the
S, state, and re-evaluate results from TA and fluorescence
excitation studies, with respect to our new findings on the
curve displacement of the S, — S; internal conversion.

Effects of vibrational cooling in the formation of the IA line-
shape.

The broad line-shape of IA at early times in Fig. 3 repre-
sents the absorption from higher vibrational levels on S;.
This early, broad and slightly red-shifted IA signal with the
lifetime of ~0.5 ps is sometimes attributed to an abstract “hot
S1” state (Andersson and Gillbro, 1995; Polivka and Sund-
strom, 2004). Its formation along with subsequent transition
to IA from the relaxed S state is attributed to vibrational
cooling. It has been proposed that vibrational cooling on
the S state is mediated by low-frequency vibrational modes
(Billsten et al, 2002; de Weerd et al, 2002). However, our
current and earlier modeling in (Balevicius Jr. et al, 2015)
gives an alternative explanation. The apparent broadening of
the IA signal at early times is a result of the initial absorp-
tion from higher-lying vibronic levels, |Si)|a > 0);|b > 0),.
The later narrowing is due to relaxation to the vibrational
thermalized state on S;: |S1)]0)1]0)2. In the displaced har-
monic oscillator model the transitions from vibronic levels
|S1)|a)1]b)2 to vibronic levels |S,)|a £ 1)1]|b £ 1), can have
higher oscillator strength than the transitions to the levels
|Sn)|a)1]b)2, depending on the involved FC factors. Thus the
sidebands around the central frequency ;, become larger
upon increased displacements d}", d}".

This mechanism can readily be observed in Fig. 4. Upon
the excitation of higher vibronic levels on S5, the higher vi-
bronic levels on S; become more populated at early times.
Transitions |S1)|a)1]b)2— |Su)la — 1)1]D)2,|Sn)|a)1|b — 1)2
increase the signal at ~16500 cm~!, while the transitions
[S1)|a)1|b)2— |Sn)|a+1)1|b)2,|Sn)|a)1|b + 1)2 increase the
signal at ~19500 cm™!. At the expense of these growths, the
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signal at the central frequency is reduced. Although the mea-
surement in Figure 4 doesn’t show the increase of the red
side of IA upon excess excitation, this is possibly the result
of an increase in noise in this spectral range. However, ear-
lier results in the literature clearly confirm this effect, conf.,
(Kosumi et al, 2005; Jailaubekov et al, 2011). The signal on
the blue side of the central peak of IA, referred to as the
S* signal, has been previously discussed (Polivka and Sund-
strom, 2009). It should be treated as the vibronic satellite of
the main TA signal if it has the same lifetime as S; (Bale-
viCius Jr. et al, 2015), while the difference in lifetime can be
accounted for by introducing vibrationally hot ground state
levels (Balevicius Jr. et al, 2016). In the current study the
former treatment is applicable.

The increased line-width of the IA signal upon 450 nm
and higher excitation has been suggested to be a result of in-
creased conformational disorder, contributing to the signal
generated by excess excitation (Billsten et al, 2005; Staleva
et al, 2015). In our model this broadening appears without
any additional assumptions, and it is rather a feature of the
same mechanism describing vibrational cooling. Namely,
the excess energy after internal conversion populates higher-
lying vibrational levels more abundantly and increases the
weight of their contribution in the total IA signal. The inho-
mogeneous line-broadening due to conformational disorder
is encoded in the width parameter A @y, conf., Eq. 2, which
is not changed in our modeling.

Lifetime of the S, state.

The excitation pulses shown in Fig. 1 were kept spectrally
narrow to selectively excite specific vibronic bands and to
avoid the formation of ground state wavepackets (Christens-
son et al, 2009), which potentially hamper the analysis of re-
laxation dynamics. As a side effect of such narrow band ex-
citation, we are unable to accurately measure the lifetime of
the S, state. Despite such shortcomings, VERA in conjunc-
tion with the NIR TA data allows us to address the question
of the S, lifetime from several perspectives. One possibil-
ity is to look directly at the evolution of the populations of
|S2)|a)1]b)2 vibronic levels. Due to the fact that individual
levels cannot be resolved in the TA experiment, we rather
look at the total population of the S5 state as the sum of its
components, 12 (t) = ¥, n4?(t). The population evolution is
interesting in that we can study the interplay between vi-
brational relaxation and internal conversion from S, to Sy.
The rate of the internal conversion S — S| in our model
is mainly governed by two parameters (Balevicius Jr. et al,
2015): the reorganization energy, A, and the displacements
dllz, d212. While the former parameter sets an overall ampli-
tude of the rate and is insensitive to the specific vibrational
levels from/to which the internal conversion takes place, the
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Fig. 5 Dependence of the S; state lifetime on the dimensionless dis-
placements d112 and d%z. (a) The lifetimes are given for two energy
gaps between the states S; and S (6810 and 6550 cm ™! represented by
full and empty symbols, accordingly), for excitations by 500 (squares)
and 430 nm (circles) pulses. The arrow indicates a critical value be-
yond which the the lifetime upon excess excitation is increased for the
6550 cm ™! gap case. (b) and (c) Schematic representation of potential
energy curves for smaller and larger energy gaps, accordingly, main-
taining identical curve displacement. In (b) optimal transfer is achieved
due to crossing of the curves. The energy shift in (c), emphasized by
the dashed line, brings the curves away from each other and increases
S» lifetime

FC factors (governed by the displacements) make the pro-
cess dependent on the specific levels involved. Therefore we
have investigated the lifetime of the total population of S; as
a function of the displacements. The lifetime is then evalu-
ated by fitting the n,(¢) evolution with a single-exponential
decay.

The following analysis is general and not limited to f3-
carotene in a specific solvent. For the sake of simplicity we
calculated the lifetime for identical values of both displace-
ments d = d112 = dzlz, a condition that well approximates the
values of d parameters summarized in Table 1. In addition
to that, we calculate the dependencies for two values of the
energy gap mp2. To keep this parameter realistic, we chose
the larger and the smaller gaps to be 6810 and 6550 cm ™!,
which corresponds to (but is not limited to) the retrieved val-
ues for cyclohexane and toluene, respectively (see Table 1).
Without loss of generality, the reorganization energies are
taken from the fit of the TA measurement in cyclohexane.

Fig. 5a shows the results of the calculation for two exci-
tation wavelengths 500 (squares) and 430 nm (circles) and
the two electronic energy gaps ®2, 6810 and 6550 cm™!
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(full vs empty symbols). The first and most significant trend
in Fig. 5a is the decrease in S, lifetime with increasing the
displacements. Secondly, the decay is faster for smaller en-
ergy gap. And lastly, but most importantly for the current
study, there is a region at d 2 0.7 — 0.8, in which S, lives for
a shorter time when the lowest vibrational level is excited.

To rationalize these observations we turn to the semi-
classical parabolic potential surface model, inspired by Mar-
cus theory of electron transfer. In Figs. 5b and c the potential
curves along one coordinate g are shown for the states S;
and S,. Fig. 5b is a schematic representation of the smaller
energy gap @ configuration, while Fig. 5¢ depicts the sit-
uation for a larger energy gap, keeping the same displace-
ment d of the upper curve. In such a semi-classical picture
the optimal and fastest energy transfer takes place at the in-
tersection points of the two parabolas.

Firstly, we elucidate why the smaller energy gap yields
faster decay at identical displacements. Fig. 5Sb demonstrates
the crossing of the two potential curves at a certain excited
vibronic level, in the configuration of the inverted Marcus
regime. Such configuration results in the optimal transfer
from a vibrationally hot excited state. In the case of larger
energy gap (Fig. 5c) the two curves are not yet in contact
and a larger displacement is needed to maximize the trans-
fer rate. This explains why the empty symbols represent
shorter lifetimes than the full symbols at all displacements
in Fig. 5a.

Next, we explain why optimal transfer from the lowest
vibrational level is achieved at larger displacements (regard-
less of the energy gap). As can be seen from the schematic
representations for the lowest excitations (shown by squares),
the bottom of the upper parabola will always cross the lower
parabola at larger displacements than any other point of the
upper parabola. The shortest lifetime values are obtained
for excitations into the lowest vibrational states at displace-
ments larger than 1 — the maximal overlap of vibronic states
is achieved there. At these displacement values higher vi-
bronic levels are detuned from the optimal overlap, hence
excess excitation leads to slower relaxation of S, state. In
principle, the displacements could be increased even further,
yet the NIR results (either in this study or in other reports
(Polivka et al, 2001)) indicate that such large displacements
are unrealistic.

Finally, the presented analysis explains how two possi-
ble internal conversion regimes emerge: a region where the
decay is faster upon excitation with excess energy (d < 0.7,
the inverted Marcus regime) and a region where it is slower
(0.7 < d < 1.1). Are these parameters realistic? The curves
near the critical point d ~ 0.7 — 0.8 imply sensitivity of the
S, lifetime trends to the chosen solvent. From inspection of
Table 1 we see that the values of d 112, le2 are very near the
critical point, some slightly above, some below. In fact, the
calculations with the experimentally determined values sug-
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Fig. 6 Calculated absorption, fluorescence and fluorescence excitation
spectra of B-carotene in cyclohexane. Absorption (black line) corre-
sponds to the dashed line in Fig. 1, fluorescence (gray line) is calcu-
lated using the same parameters plus the Stokes shift of 400 cm~'.
The gray arrow indicates the wavenumber, 17000 cm™!, at which the
emission signal for the fluorescence excitation spectrum was integrated
(see text for details). The fluorescence excitation spectrum was calcu-
lated for the parameters of -carotene in cyclohexane (dashed line)
and additionally for displacement values changed to dll2 = d212 =1.1
(dash-dotted line)

gest that the S, state of B-carotene should decay faster after
excess excitation in cyclohexane (144 fs after 500 nm ex-
citation vs 132 fs after 430 nm excitation) and slower in
toluene (106 fs vs 121 fs, respectively). The actual num-
bers should be taken with caution because of the invoked
Markov approximation and the fact that the bath relaxation
time is of the same order as the obtained lifetimes, but the
general trend should hold. Literature confirms this ambigu-
ous prediction: a slowdown of S, relaxation upon excess ex-
citation has been reported for -carotene and lycopene in
benzene and n-hexane (Kosumi et al, 2005). Slowdown was
also found for synthetic carotenoid—phthalocyanine dyads
in toluene (Kloz et al, 2012). The opposite trend was re-
ported for neurasporene in n-hexane (Zuo et al, 2007) and
zeaxanthin in methanol (Billsten et al, 2005), although later
measurements of zeaxanthin homologues in tetrahydrofuran
showed no change at all (Staleva et al, 2015). This indicates
the need to systematically apply the methodology presented
in this work to several carotenoids in a number of solvents.
The essential prerequisites for such a study are TA experi-
ments with NIR probing, covering the $;—S, IA band, and
a sufficiently short instrumental response function for TA in
the visible, to resolve the S, lifetime.

There is, however, an indirect way of testing the pre-
sented theory experimentally, without the need to invoke TA
studies with demanding time resolutions. The change of S,
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lifetime upon excess excitation should manifest itself in flu-
orescence excitation spectra. In this simple linear method,
the fluorescence of the sample at a given detection wave-
length is recorded as a function of the wavelength of a tun-
able narrow-band excitation source. For f3-carotene, a de-
crease of signal intensity in the blue as compared to the lin-
ear absorption spectrum is well documented (DeCoster et al,
1992; Dilbeck et al, 2016). We demonstrate qualitatively
how this result is explained by our theory via the following
procedure. First, we create the initial condition to represent a
narrow-band pump pulse used in the fluorescence excitation
spectroscopy. The pumping term in Eq. 6 is replaced by

Pah(t, (l)) = F(tv Tp)fOZ(OaOaaab)xa
[o(@w—0.5Amp — w02 — @ 0.4, A2)+
o(0+0.5Aw, — w2 — 0,4, AX2)],

which approximates the pump pulse as a square pulse of
width A@,=100 cm™!. Then the SE signal, defined in Eq. 4,
is integrated over in time at @3=17000cm~"!. This integral
is a function of excitation wavelength and defines the emis-
sive capability of the molecule, hence, we denote it by an
auxiliary function:

1 oo
0(@) = [ dE@n1)oy-o ®)

where N = [¢° dt|E(@f,)|w,=ay, is the norm such that (@ <
@p2) = 1 or in other words the emission after 0-0 excitation
is set to unity. Since the signal strength in the fluorescence
excitation is a combination of two factors — the emissive
capability at @y and the absorbance at the specific excitation
wavelength — we represent it as the product of the function
¢(w) and the absorption spectrum:

F(0)= (o)’ (o). ®

The calculated fluorescence excitation spectrum of f3-
carotene together with the absorption and fluorescence spec-
tra are shown in Fig. 6. The gray arrow indicates the wave-
length at which the emission is calculated. The fluorescence
excitation spectra are calculated for the parameters of [3-
carotene in cyclohexane (dashed line) and for the same pa-
rameters except the displacements d|2, d}* which are set to
1.1 (dash-dotted line). As can be seen, the actual B-carotene
parameters yield the fluorescence excitation spectrum quali-
tatively similar to the one reported in (DeCoster et al, 1992).
The decrease of signal strength at higher frequencies reflects
the reduction of S, lifetime after the excitation into higher-
lying vibronic levels. An efficient relaxation channel diverts
the energy towards S; hence preventing fluorescence. An
opposite and counter-intuitive situation is observed for the

larger displacement values of 1.1: the more efficient energy
transfer occurs from the lowest-lying vibronic level, hence
more fluorescence is detected when the higher-lying levels
are excited. This effect could explain the fluorescence ex-
citation spectra reported for spheroidene and neurasporene
(Fujii et al, 1998), where the authors suggested that the in-
crease of the fluorescence excitation signal in the blue was
due to impurities.

Conclusions

In this study we have demonstrated how the rigorous treat-
ment of high-frequency vibrational stretching modes in caro-
tenoids explains the dependence of TA spectra on the wave-
length of the pump pulse for $-carotene in solution. We have
shown that the increased line-width of the induced absorp-
tion after excitations into higher vibrational levels of S, re-
sults from vibrational cooling via the aforementioned high-
frequency modes, which means that neither low-frequency
modes nor structural inhomogeneities need to be invoked.
Furthermore, we have demonstrated how the effects of ex-
cess excitation on the lifetime of the S, state critically de-
pend on the caro-tenoid—solvent interaction, which can be
quantified by the curve displacements between the potential
energy surfaces. The presented theory explains why both a
speed-up and a slow-down of the internal conversion from
S> to S1 upon excess excitation can be observed, depending
on energy gap between S, and S and on curve displace-
ments. Finally, we suggest that a systematic study following
the presented methodology should be carried out both exper-
imentally and theoretically on sets of carotenoids in various
solvents to confirm (or deny) the presented findings on $>
lifetime.
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