1,598 research outputs found

    A Numerical Modeling Analysis Of The San Francisco Bay And Sacramento-San Joaquin Delta: Riverine, Tidal, And Wind Processes

    Get PDF
    The primary motivation of this study is to analyze the 1D-2DH hydrodynamic model of the San Francisco Bay and Sacramento-San Joaquin Delta (SFBD) outlined in Nederhoff et al. (2021). I compared model water level data to 70 tidal records from the National Oceanic and Atmospheric Association (NOAA), the United States Geological Survey (USGS), the California Data Exchange Center (CDEC), and from local municipalities throughout the Bay Area to investigate how the model captures water levels and tidal constituent amplitudes. While the Nederhoff et al (2017) model analyzed an extended time period from 1950-2019, I analyzed M2 amplitude and tidal water levels for the water year of 2017 (WY2017) with a larger dataset that extended into the Sacramento-San Joaquin Delta. Because WY2017 was a high river flow year for the Sacramento Delta, the model was able to be evaluated throughout a large range of flow regimes. I used harmonic analysis through the MATLAB package UTide (Codiga et al. 2011) to assess the model’s ability to replicate M2 amplitudes. I assessed the error for these M2 values as well as for tidal water levels. The average RMSE for M2 amplitude is 0.111 m across the entire model domain during WY2017, performing fairly consistent throughout the model. The one exception being the shallow and complex Grizzly Bay, which performed significantly worse, with RMSE values around 0.5 m. The model better replicated water levels in the 2DH grid representation of the San Francisco Bay ( Attempts to improve the model were mostly unsuccessful. I tried to increase the grid resolution at the Carquinez Strait to improve tidal propagation upstream, but altering the grid caused the coupling between the 2DH grid and 1D network to detach. This prevented the propagation of water flow in either direction at the coupling near Collinsville. The software required to fix this coupling was non-standard and unavailable for my usage, so I was unable to resolve the issue. I also attempted to create a new wind forcing file using in-situ data rather than the ERA5 reanalysis. This new wind forcing made negligible difference in water level and M2 model skill. An experiment in removing river flow showed that riverine impacts on elevating extreme water levels only have effects (\u3e0.05 m) east of the Carquinez Strait. Extreme water levels west of this point in the San Pablo, Central, and South Bays are dominated by tides, storm surge, and to a lesser extent local wind. A decrease in tidal amplitude by river flow potentially decreases flood risk in some parts of the Bay during times of high outflow from the Sacramento-San Joaquin Delta. I also investigated maximum equilibrium effects of constant wind in the two prevailing wind directions (southerly and westerly) of the San Francisco Bay. The wind setup effect become more prominent (\u3e0.05 m) at and above a steady 10 m/s in both directions. This study also showed that wind likely exerts a small influence on tidal properties, especially for winds greater than 10 m/s

    Separation of variables in perturbed cylinders

    Full text link
    We study the Laplace operator subject to Dirichlet boundary conditions in a two-dimensional domain that is one-to-one mapped onto a cylinder (rectangle or infinite strip). As a result of this transformation the original eigenvalue problem is reduced to an equivalent problem for an operator with variable coefficients. Taking advantage of the simple geometry we separate variables by means of the Fourier decomposition method. The ODE system obtained in this way is then solved numerically yielding the eigenvalues of the operator. The same approach allows us to find complex resonances arising in some non-compact domains. We discuss numerical examples related to quantum waveguide problems.Comment: LaTeX 2e, 18 pages, 6 figure

    Contribution of sea ice in the Southern Ocean to the cycling of volatile halogenated organic compounds

    Get PDF
    The contribution of sea ice to the flux of biogenic volatile halogenated organic compounds to the atmosphere in the Southern Ocean is currently not known. To approach this question, we measured halocarbons in sea ice, sea ice brine, and surface water of the Amundsen and Ross Seas. Concentrations in sea ice of these compounds, normalized to seawater salinity, ranged from 0.2 to 810 pmol L-1. Salinity-normalized chlorophyll a concentrations in the ice ranged from 3.5 to 190 mu gL(-1). Our results suggest biological production of halocarbons in sea ice, with maxima of halogenated organics and chlorophyll a commonly found in the interior of the ice cores. Iodinated VHOCs were found to be more enriched in sea ice than brominated ones. Furthermore, depth distributions indicated a transport of halocarbons from sea ice to air and underlying water

    The relationship between biophysical variables and halocarbon distributions in the waters of the Amundsen and Ross Seas, Antarctica

    Get PDF
    Little is known regarding the distribution of volatile halogenated organic compounds (halocarbons) in Antarctic waters and their relation to biophysical variables. During the austral summer (December to January) in 2007-08 halocarbon and pigment concentrations were measured in the Amundsen (100-130 degrees W) and Ross Sea (158 degrees W-160 degrees E). In addition, halocarbons were determined in air, snow and sea ice. The distribution of halocarbons was influenced to a large extent by sea ice, and to a much lesser extent by pelagic biota. Concentrations of naturally produced halocarbons were elevated in the surface mixed layer in ice covered areas compared to open waters in polynyas and in the bottom waters of the Ross Sea. Higher concentrations of halocarbons were also found in sea ice brine compared to the surface waters. Incubations of snow revealed an additional source of halocarbons. The distribution of halocarbons also varied considerably between the Amundsen and Ross Seas, mainly due to the different oceanographic settings. For iodinated compounds, weak correlations were found with the presence of pigments indicative of Phaeocystis, mainly in the Ross Sea. Surface waters of the Amundsen and Ross Seas are a sink for bromoform (saturation anomalies, SA, -83 to 11%), whereas sea ice was found to be both a source and sink (SA -61-97%). In contrast, both surface waters and sea ice were found to be a source of chloroiodomethane (SA -6-1 200% and 91-22 000 resp.). Consequently, polar waters can have a substantial impact on global halocarbon budgets and need to be included in large-scale assessments. (C) 2012 Elsevier B.V. All rights reserved

    Women's perceptions of their healthcare experience when they choose not to breastfeed

    Get PDF
    Research Question How do women who choose not to breastfeed perceive their healthcare experience? Method This qualitative research study used a phenomenographic approach to explore the healthcare experience of women who do not breastfeed. Seven women were interviewed about their healthcare experience relating to their choice of feeding, approximately four weeks after giving birth. Six conceptions were identified and an outcome space was developed to demonstrate the relationships and meaning of the conceptions in a visual format. Findings There were five unmet needs identified by the participants during this study. These needs included equity, self sufficiency, support, education and the need not to feel pressured. Conclusion Women in this study who chose not to breastfeed identified important areas where they felt that their needs were not met. In keeping with the Code of Ethics for Nurses and Midwives, the identified needs of women who do not breastfeed must be addressed in a caring, compassionate and just manner. The care and education of women who formula feed should be of the highest standard possible, even if the choice not to breastfeed is not the preferred choice of healthcare professionals

    Understanding Physical Conditions in High Redshift Galaxies through C I Fine Structure Lines: Data and Methodology

    Full text link
    We probe the physical conditions in high redshift galaxies, specifically, the Damped Lyman-alpha Systems (DLAs) using neutral carbon (CI) fine structure lines and molecular hydrogen (H2). We report five new detections of CI and analyze the CI in an additional 2 DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains \emph{both} the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of CI measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 CI velocity components in 6 DLAs and compare their properties to those derived by the global CII* technique. The resulting median values for this sample are: = 69 cm^{-3}, = 50 K, and = 3.86 cm^{-3} K, with standard deviations, sigma_{n(HI)} = 134 cm^{-3}, sigma_T = 52 K, and sigma_{log(P/k)} = 3.68 cm^{-3} K. This can be compared with the integrated median values for the same DLAs : = 2.8 cm^{-3}, = 139 K, and = 2.57 cm^{-3} K, with standard deviations sigma_{n(HI)} = 3.0 cm^{-3}, sigma_T = 43 K, and sigma_{log(P/k)} = 0.22 cm^{-3} K. Interestingly, the pressures measured in these high redshift CI clouds are similar to those found in the Milky Way. We conclude that the CI gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.Comment: Accepted for publication in Ap

    Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets

    Get PDF
    Time-resolved spectroscopy in the visible and near-infrared (NIR) regions was used in a feasibility study for analysis of solid pharmaceuticals. The objective of the experiments was to study the interaction of light with pharmaceutical solids and to investigate the usefulness of the method as an analytical toot for spectroscopic analysis. In these experiments, a pulsed Ti:sapphire laser and white light generation in water was utilized to form a pulsed light source in the visible/NIR region. The light was focused onto the surface of tablets, and the transmitted light was detected by a time-resolving streak camera. Two types of measurements were performed. First, a spectrometer was put in front of the streak camera for spectral resolution. Secondly, the signal originating from different locations of the sample was collected. Time-resolved and wavelength/spatially resolved data were generated and compared for a number of different samples. The most striking result from the experiments is that the typical optical path length through a 3.5-mm-thick tablet is about 20-25 cm. This indicates very strong multiple scattering in these samples. Monte Carlo simulations and comparison with experimental data support very high scattering coefficients on the order of 500 cm(-1). Furthermore, the data evaluation shows that photons with a particular propagation time through the sample contain a higher chemical contrast than other propagation times or than steady-state information. In conclusion, time-resolved NIR spectroscopy yields more information about solid pharmaceutical samples than conventional steady-state spectroscopy

    Scatter correction of transmission near-infrared spectra by photon migration data: Quantitative analysis of solids

    Get PDF
    The scope of this work is a new methodology to correct conventional near-infrared (NIR) data for scattering effects. The technique aims at measuring the absorption coefficient of the samples rather than the total attenuation measured in conventional NIR spectroscopy. The main advantage of this is that the absorption coefficient is independent of the path length of the light inside the sample and therefore independent of the scattering effects. The method is based on time-resolved spectroscopy and modeling of light transport by diffusion theory. This provides an independent measure of the scattering properties of the samples and therefore of the path length of light. This yields a clear advantage over other preprocessing techniques, where scattering effects are estimated and corrected for by using the shape of the measured spectrum only. Partial least squares (PLS) calibration models show that, by using the proposed evaluation scheme, the predictive ability is improved by 50% as compared to a model based on conventional NIR data alone. The method also makes it possible to predict the concentration of active substance in samples with other physical properties than the samples included in the calibration model
    • …
    corecore