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Autologous haematopoietic stem cell transplantation has been tried as one experimental strategy for the treatment of patients

with aggressive multiple sclerosis refractory to other immunotherapies. The procedure is aimed at ablating and repopulating the

immune repertoire by sequentially mobilizing and harvesting haematopoietic stem cells, administering an immunosuppressive

conditioning regimen, and re-infusing the autologous haematopoietic cell product. ‘Non-myeloablative’ conditioning regimens

to achieve lymphocytic ablation without marrow suppression have been proposed to improve safety and tolerability. One trial

with non-myeloablative autologous haematopoietic stem cell transplantation reported clinical improvement and inflammatory

stabilization in treated patients with highly active multiple sclerosis. The aim of the present study was to understand the

changes in the reconstituted immune repertoire bearing potential relevance to its mode of action. Peripheral blood was obtained

from 12 patients with multiple sclerosis participating in the aforementioned trial and longitudinally followed for 2 years.

We examined the phenotype and function of peripheral blood lymphocytes by cell surface or intracellular staining and multi-

colour fluorescence activated cell sorting alone or in combination with proliferation assays. During immune reconstitution post-

transplantation we observed significant though transient increases in the proportion of CD4 + FoxP3 + T cells and CD56high

natural killer cell subsets, which are cell subsets associated with immunoregulatory function. CD8 + CD57 + cytotoxic T cells

were persistently increased after therapy and were able to suppress CD4 + T cell proliferation with variable potency. In contrast, a

CD161high proinflammatory CD8 + T cell subset was depleted at all time-points post-transplantation. Phenotypic characterization

doi:10.1093/brain/awt182 Brain 2013: 136; 2888–2903 | 2888

Received October 2, 2012. Revised May 9, 2013. Accepted May 12, 2013. Advance Access publication July 17, 2013

� The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

For Permissions, please email: journals.permissions@oup.com



revealed that the CD161highCD8 + T cells were mucosal-associated invariant T cells, a novel cell population originating in the

gut mucosa but expressing the central nervous system-homing receptor CCR6. Detection of mucosal-associated invariant T cells

in post-mortem multiple sclerosis brain white matter active lesions confirmed their involvement in the disease pathology.

Intracellular cytokine staining demonstrated interferon � and interleukin 17 production and lack of interleukin 10 production,

a pro-inflammatory profile. Mucosal-associated invariant T cell frequency did not change in patients treated with interferon b;

and was more depleted after autologous haematopoietic stem cell transplantation than in patients who had received high-dose

cyclophosphamide (n = 7) or alemtuzumab (n = 21) treatment alone, suggesting an additive or synergistic effect of the condi-

tioning regime components. We propose that a favourably modified balance of regulatory and pro-inflammatory lymphocytes

underlies the suppression of central nervous system inflammation in patients with multiple sclerosis following non-myeloa-

blative autologous haematopoietic stem cell transplantation with a conditioning regimen consisting of cyclophosphamide and

alemtuzumab.

Keywords: stem cells; multiple sclerosis; T cells; proinflammatory cytokines; immune regulation

Abbreviations: AHSCT = autologous haematopoietic stem cell transplantation; IFN = interferon; IL = interleukin;
MAIT = mucosal-associated invariant T cell; TNF = tumour necrosis factor

Introduction
Multiple sclerosis is an inflammatory and neurodegenerative dis-

ease of the CNS (Compston and Coles, 2008). Current immune-

modifying treatments are incompletely effective in patients with

aggressive multiple sclerosis phenotypes. Autologous bone marrow

or haematopoietic stem cell transplantation (AHSCT) has been

experimented in patients with aggressive forms of multiple scler-

osis, aimed at suppressing CNS inflammatory activity and prevent-

ing further clinical deterioration (Saccardi et al., 2012). The

mechanistic rationale for AHSCT is to first purge the mature

immune system through intensive immune suppression and to

then promote—with haematopoietic stem cell support—the recon-

stitution of a new immune system, free from aberrant responses

that had previously developed within the individual’s adaptive

immune system.

Recent studies support a role for de novo regeneration of naı̈ve

T cells from the thymus (Hakim et al., 2005; Muraro et al., 2005),

for enhanced immune regulation after AHSCT (de Kleer et al.,

2006; Alexander et al., 2009; Zhang et al., 2009). In addition, a

recent study by Darlington et al. (2013) showed abrogation of the

T helper (Th)17 response following high-intensity AHSCT.

However, the cellular and molecular mechanisms underlying

improved clinical course post-AHSCT treatment are poorly under-

stood and further complexity is added by the use of different

immunosuppressive conditioning regimens. Non-myeloablative

conditioning regimens have been proposed to improve tolerability

and safety of AHSCT and allow treatment at earlier stages of

disease than in the initial clinical trials (Burt et al., 2010).

Current evidence for the immune modulatory mechanisms occur-

ring after AHSCT remains scarce and no study to our knowledge

has examined in detail the effects of a non-myeloablative condi-

tioning transplantation regimen on the immune system. One

recently published clinical trial of AHSCT using a non-myeloabla-

tive conditioning regimen in patients with highly active multiple

sclerosis has demonstrated sustained clinical stabilization in all and

even improvement of disability in some patients (Burt et al.,

2009). To investigate the immunological mechanisms underlying

the remission of CNS inflammation, we performed longitudinal

analysis of immune reconstitution in a group of patients treated

in that trial.

Our results show that following this non-myeloablative treat-

ment protocol using cyclophosphamide and alemtuzumab for im-

munosuppressive conditioning, there were significant transient

increases of CD4 + CD25highFoxP3+ T cells and of CD56high natural

killer cells, both phenotypes associated with immune regulatory

function. We also observed robust and long-term increase of

CD8 + CD57 + T cells post-AHSCT. CD8 +CD57 + T cells were, in

some patients, able to suppress CD4 + T cell proliferation in

ex vivo cell co-cultures with superior efficiency. In contrast, we

identified a population of CD161highCD8 + T cells that were readily

detectable in the blood of all patients pre-transplant, but were

maximally and permanently ablated during the 2-year post-

AHSCT follow-up. Further characterization of the CD161high

CD8 + T cell population found in multiple sclerosis patients’

blood pre-AHSCT revealed that these cells are mucosal-associated

invariant T (MAIT) cells, a T cell subset associated with the gut

(Le Bourhis et al., 2010; Dusseaux et al., 2011). High CD161-

expression defined a subset of pro-inflammatory T cells that

includes the majority of interleukin (IL)-17 producing CD8 +

T cells and also produces IFN-� and tumour necrosis factor

(TNF)-� but not IL-10. We confirmed that MAITs are able to mi-

grate to the brain as they were present in the white matter and

perivascular infiltrate of post-mortem multiple sclerosis brain

tissue. Comparison of MAIT frequency in patients that received

other multiple sclerosis treatments, including the individual com-

ponents of the conditioning regimen, high-dose cyclophosphamide

and alemtuzumab monotherapy, revealed that autologous haem-

atopoietic transplantation induced the most consistent depletion

for up to 2 years post-therapy.

The data demonstrate that the adaptive immune system

reconstituted in patients with multiple sclerosis following the

non-myeloablative AHSCT regimen is characterized by a favour-

ably modified balance of pro- and anti-inflammatory lymphocyte

subsets in the circulation, characterized by the expansion of immu-

noregulatory cells and radical depletion of a gut-associated
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CD161highCD8 + MAIT population, which produces IFN-� and IL-

17, bears a pro-inflammatory profile and is able to infiltrate the

CNS.

Materials and methods

Subjects, treatment and biological
samples
Patients with aggressive multiple sclerosis who failed to respond to

licensed immune-modifying treatments were recruited for an institu-

tional review board-approved clinical trial of non-myeloablative

immunosuppressive conditioning with cyclophosphamide and alemtu-

zumab and AHSCT at Northwestern University, Chicago, USA (Burt

et al., 2009). Following informed consent, peripheral blood for the

research study was donated by subjects with multiple sclerosis

undergoing AHSCT in the trial (n = 12). The demographic and clinical

characteristics of the non-myeloablative AHSCT trial patients who

participated in this study are provided in Table 1. All these patients

underwent non-myeloablative conditioning with 120 mg/kg cyclo-

phosphamide and 20 mg alemtuzumab. Peripheral blood samples

were obtained from the AHSCT patients at baseline within 1 month

before haematopoietic stem cell mobilization, and at 6 months, 1 and

2 years post-haematopoietic stem cell reinfusion.

Peripheral blood mononuclear cell samples for comparative immuno-

logical analysis were obtained from non-AHSCT patients with multiple

sclerosis (n = 40), and healthy individuals (n = 7). Of the non-AHSCT

patients with sclerosis, five were untreated and seven received stand-

ard disease-modifying treatment with interferon-beta (IFN-b):

Betaferon� (n = 5), Betaseron� (n = 1) or Avonex� (n = 1). The five

patients receiving Betaferon� were studied longitudinally before and

during the first 9 months of treatment. One additional group included

patients who had participated in a study of high-dose cyclophospha-

mide (n = 7). Patients in this study received 50 mg/kg/day of cyclo-

phosphamide intravenously for four consecutive days, followed by

5 mg/kg/day of granulocyte colony stimulating factor 6 days after

completion of high-dose cyclophosphamide treatment, until the abso-

lute neutrophil count exceeded 1.0 � 109 cells/l for two consecutive

days. The protocol has been described in detail elsewhere (Krishnan

et al., 2008). Of the seven patients, five had pretreatment baseline

and post-treatment samples over a 2-year follow-up, one was

available only at pretreatment baseline, and one only at 2 years

post-therapy. The high-dose cyclophosphamide treated patients’ clin-

ical characteristics are given in Supplementary Table 1. The last group

of patients received alemtuzumab monotherapy (n = 21) by participat-

ing in one of four studies: CAMMS-224 (an investigator-led study,

REC 03/078); CAMMS-223 (a Phase 2 randomized controlled trial)

or CARE-MS1 or CARE-MS2 (Phase 3 randomized controlled trials).

Alemtuzumab was given for 5 days at baseline then for 3 days at

Month 12 (12 or 24 mg/day); further cycles were given if there was

clinical or radiological evidence of disease activity. All patients con-

sented to long-term follow-up and venipuncture for research purposes

(CAMSAFE REC-11/33/0007). Only post-treatment samples were

available for analysis. Demographic and clinical information on alem-

tuzumab-treated patients is provided in Supplementary Table 2.

Peripheral blood mononuclear cells were freshly separated by dens-

ity gradient centrifugation and cryopreserved according to rigorously

standardized protocols for subsequent use in batched, parallel immune

analysis. All laboratory studies received ethical approval from Imperial

College Research Ethics Committee (Ref. ICREC62D). T
ab
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Flow cytometry
Peripheral blood mononuclear cells were thawed in Dulbecco’s PBS

and washed in fluorescence activated cell sorting staining buffer

(Dulbecco’s PBS, 1% foetal bovine serum and 0.01% sodium azide).

Surface staining was performed on ice for 20 min and the cells were

then analysed on a two laser, four colour FACSCalibur flow cytometer,

or for multicolour analysis on a five laser, 18 colour LSRFortessa

(Becton Dickinson). Data were analysed using CellQuest (Becton

Dickinson) and FlowJo software (TreeStar).

Immune reconstitution and phenotyping
studies
Multiplexed dilutions of monoclonal antibodies (mAbs) were used to

characterize lymphocyte populations. The following antibodies from

BD Biosciences were used: CD3-Cy-Chrome, CD3-RPE-Cy5, CD4-

RPE-Cy5, CD4-APC, CD5-APC, CD8-FITC, CD8-RPE-Cy5, CD8-

PerCP, CD8-APC, CD11a-PE, CD14-APC, CD19-FITC, CD20-PE,

CD25-FITC, CD25-PE, CD27-FITC, CD28-PE, CD31-PE, CD45RA-

FITC, CD45RA-PE, CD45RO-PE, CD45RO-APC, CD54-PE (ICAM-1),

CD56-PE, CD57-FITC, CD58-FITC (LFA-3), CD62L-PE, CD69-FITC,

CD95-PE, CD161-FITC (clone DX12), and T-cell receptor (TCR)�b-

FITC. Other monoclonal antibodies included CD49d-FITC and

ILT2-PE (clone HP-F1) from Beckman Coulter.

Regulatory CD4 + cell quantification

Staining for CD3-PE-Cy7 (BD Biosciences), CD4-BV711, CD8-BV785,

CD25-BV421, CD45RA-BV510 (BioLegend), and CD127-FITC

(eBioscience) was performed before fixation and permeabilization of

the cells. Intranuclear cell staining was performed according to the

manufacturer’s instructions using FoxP3 Alexa Fluor� 647 (clone

PCH101) and Ki-67 PerCP-eFluor710 (eBioscience). Blue Live/Dead

Stain (Life Technologies) was added to the samples before FoxP3

staining to for live versus dead cells discrimination.

Characterization of mucosal-associated
invariant T cells
Multicolour staining was performed with the following antibodies:

TCRV�7.2-APC, TCRV�7.2-PE (clone 3C10), CD4-BV711, CD4-

BV785, CD8-BV711, CD8-BV785, CD45RA-BV510, CD161-BV421

or CD161-BV605, CCR6 (CD196) PerCP-Cy5.5, from BioLegend;

CD161-PE and CD161-APC (clone 191B8) from Miltenyi Biotec;

CD3-PE, ILT2 (CD85j)-APC, ILT2-PE, CD150 PE and CD218 (IL-18R)

FITC from eBioscience; CCR6-PE from R&D Systems; CD3-APC-H7

and CD57 PE-CF594, CCR7 (CD197) PE-Cy7 (BD Biosciences) and

CD45RO-ECD (Beckman Coulter). Blue Live/Dead Stain (Life

Technologies) was included for exclusion of dead cells.

Characterization of T cell receptor
variable region expression
TCRV�7.2-FITC and TCRV�7.2-PE (clone 3C10) were obtained from

BioLegend. For TCRBV usage CD8 + T cells, peripheral blood mono-

nuclear cells were stained with anti-CD8-PerCP (clone SK3, BD

Bioscience) and anti-CD161-APC (clone 191B8, Miltenyi Biotec), in

combination with pairs of FITC and PE-conjugated antibodies to the

following TCRVb chains and assessed as previously described (Muraro

et al., 2000): BV1-PE (clone BL37.2), BV2-PE (clone MPB2D5), BV3-

FITC (clone CH92), BV5S1-FITC (clone Immu157), BV5S2-FITC (clone

36213), BV5S3-PE (clone 3D11), BV6S7-FITC (clone OT145), BV7-PE

(clone ZOE), BV8-FITC (clone 56C5.2), BV9-PE (clone FIN9), BV11-

FITC (clone C21), BV12-FITC (clone VER2.32.1), BV13S1-PE (clone

Immu222), BV13S2-PE (clone H132), BV14-PE (clone CAS1.13),

BV16-FITC (clone TAMAYA1.2), BV17-FITC (clone E17.5F3), BV18-

PE (clone BA62.6), BV20-PE (clone ELL1.4), BV21S3-FITC (clone

IG125), BV22-FITC (clone Immu546) and BV23-PE (clone AF23).

TCRBV6S7 was obtained from Endogen (Thermo Fisher Scientific),

TCRBV13S2 from Santa Cruz Biotechnology, and all other TCRBV

monoclonal antibodies were purchased from Immunotech.

Intracellular staining for cytotoxic
enzymes
Cytotoxic potential was assessed by intracellular staining after fixation

and permeabilization of the cells. Antibodies to perforin (PE) and gran-

zyme B (Alexa Fluor� 647) were purchased from BD Biosciences.

Cytokine production assay
Peripheral blood mononuclear cells were stimulated for 5 h with

phorbol-12-myristate-13-acetate (PMA, 50 ng/ml) and ionomycin

(1 mg/ml) in the presence of brefeldin A (10 mg/ml, all from Sigma-

Aldrich), ex vivo after overnight recovery in cell incubator with RPMI-

1640 with 10% foetal bovine serum. The cells were harvested and

stained for relevant surface markers before fixation in 1% paraformal-

dehyde and permeabilization in 0.2% saponin. Intracellular cytokine

production was assessed by IFN-� Horizon V450, TNF-� PE-Cy7, IL-10

PE (BD Biosciences) and IL-17A Alexa Fluor� 647 (eBioscience).

Suppression assays
Peripheral blood mononuclear cells were thawed and left to recover

overnight in RPMI-1640 with 10% foetal bovine serum and 20 U/ml

of IL-2. The following day, CD8 + CD57 + and CD8 + CD57� cells were

obtained from peripheral blood mononuclear cell using a magnetic

microbead kit from Miltenyi Biotec. The percentage of natural killer

cells found in all cases was 45%. The CD8-depleted fraction was stained

with carboxyfluorescein succinimidyl ester (CFSE, Life Technologies)

and used as ‘effector’ (E) cells, while CD8 + CD57 + and CD8 + CD57�

cells were used as ‘regulatory’ (R) cells. Co-cultures were conducted at

different R:E ratios in the presence of soluble anti-CD3 antibody (OKT3,

0.5 mg/ml, eBioscience). On Day 4, the cells were washed and stained.

Propidium iodide (1 mg/ml) was used for dead cell exclusion. The

percentage of cell proliferation was quantified on live (propidium

iodide-negative) CD4-gated cells. To normalize the data providing

from different donors, the proliferation in the absence of CD8 + cells

(0:1 ratio) was considered 100% and the normalized proliferation was

defined as the percentage of normalized proliferation at test ratio =

(% dividing cells at test ratio / % dividing cells at 0:1 ratio) � 100, and

% suppression was defined as (100 �% proliferation).

Immunostaining of multiple sclerosis
brain tissue
Brain tissue blocks were provided by the UK Multiple Sclerosis Tissue

Bank at Imperial College, London, UK. Post-mortem tissues were

collected with fully informed consent through a prospective donor

scheme with ethical approval by the National Research Ethics

Committee (08/MRE09/31). Tissue blocks were screened and chronic

active white matter lesions were identified as described previously

AHSCT resets immune balance in MS Brain 2013: 136; 2888–2903 | 2891



(Magliozzi et al., 2007). Snap frozen brain white matter tissue blocks

containing active lesions were selected from a subset of nine cases

with progressive multiple sclerosis with high levels of CNS inflamma-

tion that formed part of a larger, well-described case series (Howell

et al., 2011). Tissue blocks (four per case) cut at 10mm, fixed for

10 min in ice-cold methanol and stained using a double sequential

immunofluorescence technique, first using anti-CD161 antibody

(clone: B199.2, AbD Serotec) followed by anti-V�7.2 antibody

(clone: 3C10, BioLegend). Sections were incubated overnight at 4�C

with the first primary antibody. Binding of biotinylated secondary anti-

body was visualized with the avidin-biotin horseradish peroxidase

complex (Vector Laboratories) followed by 30-min incubation with

tyramine (Sigma) in PBS containing 0.03% H2O2 according to a mod-

ified version of a method described by Adams (1992). The negative

control consisted in the same protocol without incubation with tyram-

ine. After 1 h incubation with Alexa Fluor� 546-streptavidin

(Invitrogen) sections were washed, blocked with normal serum and

incubated overnight at 4�C with the second primary antibody that

was then visualized with an Alexa Fluor� 488 secondary antibody

(Invitrogen). Sections were counterstained with 4’,6-diamidino-2-

phenylindole (DAPI, Sigma) for the localization of the nuclei and

coverslipped with aqueous mounting medium Vectashield (Vector

Laboratories).

Statistical analysis
Statistical significance was calculated using unpaired t-test, or by

signed rank test for paired data that was not normally distributed.

For multiple group comparisons, statistical significance was evaluated

by parametric repeated measures ANOVA and Holm-Sidak’s post hoc

test, or if the normality test failed, by non-parametric ANOVA

on ranks and Dunn’s post hoc test. An overall P-value5 0.05 was

considered significant. Values are given as mean � standard deviation

(SD) for parametric comparisons, or median and interquartile range

(IQR) for non-parametric comparisons. Graphical presentations were

created with GraphPad Prism 5 and the statistical analyses were per-

formed using SigmaStat v3.1 software (Systat Software).

Results

Moderate contribution of thymic
reactivation to immune reconstitution
We first evaluated the basic lymphocyte reconstitution after non-

myeloablative AHSCT. Total absolute lymphocyte counts mea-

sured in whole blood were decreased up to the first year after

treatment. The proportion of CD4 + cells within the total T cell

population remained reduced for the entire 2-year follow-up

whereas no significant differences were detected in the percent-

ages of CD8 + T cells, hence CD4/CD8 ratios were persistently

decreased (Supplementary Fig. 1 and Supplementary Table 3).

Previous work from our group and others has shown that

AHSCT following myeloablative conditioning promoted increased

output of de novo generated naı̈ve T cells (Hakim et al., 2005;

Muraro et al., 2005). We now examined immune reconstitution

after non-myeloablative AHSCT through quantification of func-

tional differentiation stages of T cells, including naı̈ve (Tnaı̈ve), cen-

tral-memory (TCM), and effector memory (TEM) cells (Fig. 1 A and

Supplementary Table 3). Post-AHSCT the proportion of Tnaı̈ve cells

(CD45RO�CD27 +) was unaltered in the CD4 + subset and

decreased in the CD8 + subset (from mean 61 � 14% at baseline

to 33 � 12% at 2 years, P = 0.001). Conversely, TEM

(CD45RO +CD27�) cells constituted a larger proportion of the

total CD8 + pool than at baseline (from mean 4.2 � 3.0% to

26 � 14% at 2 years post-therapy, P50.001). There was a

trend to an increase of CD4 + TEM cells. These results suggested

that T cell reconstitution during the first 2 years post-transplant-

ation was predominantly driven by peripheral expansion.

To ensure that effective thymic output was not masked by per-

ipheral expansion (either antigen-driven or homeostatic) of naı̈ve

Figure 1 Moderate thymic reactivation during T cell reconsti-

tution. The proportions of peripheral blood T cells in functional

differentiation stages are shown at pretreatment baseline and at

indicated time points post-AHSCT. (A) Reconstitution of naı̈ve,

effector memory (TEM), and central-memory (TCM) cell popula-

tions are expressed as the percentage of cells CD4 + versus

CD8 + cells Statistical tests performed were repeated measures

ANOVA (naı̈ve CD4 + cells and all CD8 +) and non-parametric

ANOVA (CD4 TEM and TCM). (B) Reconstitution of recent

thymic emigrant (RTEs) CD4 + cells. The proportions of recent

thymic emigrants (CD31 + CD45RO�) in the total and in the

naı̈ve (CD45RA + CD45RO�) CD4 + cell populations are

increased after treatment. Statistical test performed was re-

peated measures-ANOVA. Pretreatment (PreTx) n = 11, 6

months (6 mo) n = 10, 1 year (1 yr) n = 10, 2 years (2 yrs) n = 7.
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cells resulting in conversion into effector/memory phenotypes, we

enumerated naı̈ve CD4 + T cells expressing CD31, a marker of

recent thymic origin (Kimmig et al., 2002). Such recent thymic

emigrant naı̈ve cells constituted a higher proportion of all CD4 +

cells at 1 year after therapy (from mean 30 � 12% to 45 � 18%,

a 50% increase, P = 0.025, Fig. 1B). Also the proportion of naı̈ve

CD45RA +CD45RO� cells expressing CD31 was increased for up

to the first year post-AHSCT (from mean 73 � 13% to 84 � 9%,

P = 0.005). These results show that during the first 2 years after

non-myeloablative AHSCT the reconstitution of the circulating

T cell pool is dominated by the expansion in the periphery of

differentiated T cells acquiring effector cell phenotypes, with a

moderate but significant activation of thymic output.

Immunoregulatory cell surge early
post-therapy
To investigate the evolution of immunoregulatory cell populations

post-therapy, we used in our analysis a number of markers spe-

cifically defining regulatory lymphocytes. At 6 months post-AHSCT

there was a significant increase in the frequency of CD25high

CD127-FoxP3 + cells in the CD4 + T cell subset [from median

0.11% (IQR 0.03–0.20) to median 1.5% (IQR 0.9–1.9),

P = 0.002, Fig. 2A], as well as an expansion of CD56high natural

killer cells [from median 0.5% (IQR 0.3–1.3] to 3.7% (IQR

2.8–5.1), P = 0.001, Fig. 2B). The frequency of both cell subsets

subsequently returned to near baseline levels at 1 year after treat-

ment. The changes in the absolute counts were not significant

(Supplementary Table 3). These data show that the proportions

of regulatory T and natural killer cells are increased post-AHSCT.

Their transient increase may help modulate activated effector cells

during the early stages of antigen re-experiencing (O’Gorman

et al., 2009).

To assess whether the increased proportions of CD4 + regulatory

T cells were a result of increased homeostatic proliferation at

6 months, we assessed the expression of Ki-67, a cellular marker

for proliferation. Whereas the percentage of Ki-67-expressing cells

in the total CD4 + T cell population increased at 6 months (from

2.2 � 1.1% to 5.6 � 3.0%, P = 0.035; Supplementary Fig. 2A),

the percentage of actively proliferating regulatory T cells, which

was nearly four times that of the total CD4 + T cell population

at pretreatment baseline, did not change post-therapy (from

26 � 12% to 20 � 9%, P = not significant; Supplementary Fig.

2B). These results suggested that the increased relative frequency

post-transplantation of CD4 + CD25highFoxP3+ regulatory T cells

was not due to an increase in their proliferation rate.

We were also interested in the potential contribution to treat-

ment effect of CD8 +CD57 + cells, a suggested immunoregulatory

Figure 2 Post-therapy surge of lymphocytes with regulatory phenotype. A significant relative increase of cells with well-described

immunoregulatory phenotypes in major lymphocyte populations (CD4 + cells and natural killer cells) was detected at 6 months post-

treatment follow-up. (A) The figure shows the gating strategy and the percentages of FoxP3 +CD127�CD25high in the CD4 + T cell

population. The cells were first gated on live CD25highCD4 +CD3 + cells and then on the FoxP3+CD127� populations. The numbers in the

dot plots indicate the percentages of FoxP3+CD127�CD25high cells in the CD4 +CD3 + population T cells. Pretreatment (PreTx) n = 6,

6 months (6 mo) n = 6, 1 year (1 yr) n = 5, 2 years (2 yrs) n = 1. (B) Percentage of CD56high natural killer cells. Pretreatment (PreTx)

n = 11, 6 months (6 mo) n = 10, 1 year (1 yr) n = 10, 2 years (2 yrs) n = 5. Statistical test performed was non-parametric ANOVA.
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population (Autran et al., 1991; Mollet et al., 1998) that is sig-

nificantly increased in the periphery of patients with multiple scler-

osis after treatment with myeloablative AHSCT (Muraro et al.,

2005) as well as during treatment with glatiramer acetate (Ratts

et al., 2006). CD57 + cells occupied a significantly greater propor-

tion of the CD8 + T cell pool at all post-AHSCT time points when

compared with the baseline before haematopoietic cell mobiliza-

tion, reaching almost four times the baseline levels at 2 years post-

transplantation (from mean 16 � 9% to 59 � 13% of all

CD8 +T cells, P50.001; Supplementary Fig. 3A). CD8 + CD57 +

T cells after treatment were mainly effector memory cells

(not shown) that produced high levels of IFN-�, granzyme B

(Supplementary Fig. 3B and C) and perforin (not shown). Their

phenotype was therefore consistent with that of classic cytotoxic

CD8 + T cells (Chattopadhyay et al., 2009).

To investigate the potential immunoregulatory ability of

CD8 +CD57 + T cells, we carried out suppression assays in which

CD8-depleted peripheral blood mononuclear cells (effector cells)

were stained with the vital dye carboxyfluorescein succinimidyl

ester (CFSE) and co-cultured with increasing numbers of

CD8 +CD57 + and CD8 +CD57� (‘regulatory cells’) in the presence

of a polyclonal (anti-CD3 antibody) stimulus. We then assessed

the inhibition of CD4 + T cell proliferation by measuring CFSE

dilution in effector cells after 4 days in culture in the presence

of both CD8 +CD57 + and CD8 +CD57� cells (Supplementary Fig

3D). The degree of inhibition by CD8 +CD57 + cells varied in dif-

ferent subjects and was either greater or equal to that of their

CD57� counterpart at all ‘regulatory’ to ‘effector’ (R:E) ratios

(Supplementary Fig. 3E). These experiments demonstrated that

cytotoxic CD8 +CD57 + T cells are massively increased in number

after AHSCT and, although CD57 was not a marker for inhibition

per se, the subset comprised in some patients cells with strong

suppressive activity.

CD161highCD8 + are radically depleted
after autologous haematopoietic
transplantation and are invariant T cells
associated with the gut mucosa
Extensive multi-colour fluorescence activated cell sorter phenotypic

characterization of pretreatment CD3 + CD8 + cells (data not

shown) revealed a distinct CD161highCD8�high/dim population

(Fig. 3A). CD161highCD8 + T cell populations were present in the

Figure 3 CD161highCD8 are depleted following AHSCT and are MAITs. The CD161high cells represented on average �8% of the

CD8 +CD3 + cell population and were almost undetectable after the therapy with AHSCT. (A) Representative example of CD161 expression

by CD8 +CD3 + cells in one patient at pre-therapy and at indicated time-points after AHSCT. (B) The box plots represent the proportion of

CD161high CD8 +CD3 + cells at pretreatment and at indicated time points after AHSCT. Pretreatment (PreTx) n = 11, 6 months (6 mo) n = 9,

1 year (1 yr) n = 8, 2 years (2 yrs) n = 6. (C) Representative example of MAIT markers expressed by CD161highCD8 + cells show an almost

exclusive usage of TCR V�7.2 and expression of IL-18R�, CCR6, and CD150. (D) Difference in T cell receptor beta variable (BV) gene

expression of CD161highCD8 + cells with reference to the total CD8 + population [% BV (CD161highCD8 � all CD8 cells)] shows a prefer-

ential usage of Vb2 and Vb13.2 by CD161highCD8 + cells (red boxes, n = 7). The bars indicate the mean and standard deviation. Asterisks

indicate significant P-values (50.05, unpaired t-test). BV = T cell receptor beta variable (BV) gene.
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blood of all the patients before treatment (mean 7.8 � 3.2% of

total CD8 +CD3 + cells). Of note, this population was radically

depleted after AHSCT, and remained nearly undetectable for the

whole follow-up period of 2 years (P50.001; Fig. 3B).

High expression of CD161 in CD8high/dim T cells defines the

MAIT subset (Dusseaux et al., 2011), a CD4� T cell subset

defined by the expression of innate immune receptors and usage

of the semi-invariant TCR V�7.2-J�33 (Treiner et al., 2003), with

a preferential Vb2 and Vb13 gene expression (Tilloy et al., 1999;

Treiner et al., 2005). We confirmed that 490% of the

CD161highCD8 + T cell population in patients with multiple scler-

osis expressed TCR V�7.2 and that high expression of CD161 was

associated with expression of IL-18R�, CCR6 and the SLAM mol-

ecule CD150 (Fig. 3C), consistent with a recent defining descrip-

tion of MAITs (Dusseaux et al., 2011). In contrast, a high

expression of CD161 in the less frequent CD4�CD8� T cell

subset did not identify MAITs per se, as a large proportion of

these CD4�CD8�CD161high cells did not express V�7.2

(Supplementary Fig. 4A). The CD161highCD8 + subset was also

enriched in cells expressing TCR Vb2 (mean 15.4 � 6.4% of

CD161highCD8 + ) and Vb13.2 (mean 7.3 � 3.3%), consistent

with MAITs, and readily appreciated when expressed as the

difference of TCR expression in the CD161highCD8 + T cells com-

pared with all CD8 + T cells (Fig. 3D). The CD161highCD8 + T cell

population showed a pattern of markers typical of antigen primed

(CD45RA�CD45RO +CD27 + /�CD28 + CD62L�) effector memory

cells (Supplementary Fig. 4B).

CD161highCD8 + mucosal-associated
invariant T cells are proinflammatory
To assess the cytokine profile of CD161high, CD161dim, and CD161�

CD8 + T cells, we carried out intracellular cytokine staining.

CD161highCD8 + T cells from patients with multiple sclerosis before

AHSCT produced the pro-inflammatory cytokines IFN-�, TNF-�, and

IL-17 (Fig. 4 A), but not the immunoregulatory IL-10 (results not

shown). Of all CD8 + subsets, the CD161highCD8 + subset contained

the highest frequency of IFN-� (77 � 4%, P50.001, Fig. 4B) and

TNF-� producing cells (56 � 12%, P50.001, Fig. 4C). The frequen-

cies of CD8 + T cells producing IL-17 tended to be higher in the

CD161high (mean 1.76 � 1.57% and 1.15 � 1.4%, P = 0.040,

Fig. 4D), but the analysis was not powered to detect the differences

between the groups. However, the CD161highCD8 + subset had

the highest frequencies of cells producing both IL-17 + and IFN-�

(mean 0.82 � 0.69%, P = 0.002, Fig. 4E).

When comparing the frequencies of CD161high, CD161dim, and

CD161� cells within the cytokine-producing CD8 + T cells, the

majority of the cells producing the widely expressed IFN-� and

TNF-� were CD161�CD8 + cells (that constitute 80–90% of the

CD8 + T cell pool). Despite their considerably smaller numbers,

CD161high cells constituted half of the total IL-17 + (mean

49 � 28%) and IL-17 + IFN-� + double positive cells (mean

51 � 26%, Fig. 4F).

Together these data confirmed that the CD161highCD8 + T cells

present in patients with multiple sclerosis before treatment and

ablated post-therapy were proinflammatory effector MAITs,

which contained a major fraction of IL-17 producing and

IL-17/IFN-� co-producing CD8 + T cells.

Mucosal-associated invariant T cells are
present in multiple sclerosis lesions
The almost exclusive expression of CCR6 on CD8 + MAITs sug-

gested their ability to enter the CNS (Reboldi et al., 2009). We

then investigated whether CD161-expressing MAITs were also

present in multiple sclerosis lesions in post-mortem brain tissue

from nine cases with high levels of inflammatory CNS infiltration.

Staining with antibodies against CD8 and CD161 revealed the

presence of double positive CD161 +CD8 + cells within the inflam-

matory infiltrates of chronic active white matter lesions (Fig. 5A).

Since distinction of the CD161high versus CD161dim + cells is not

possible in tissue, we also stained for TCRV�7.2, which together

with CD161 defines the MAIT population. We confirmed by dual

immunofluorescent staining that CD161 and TCRV�7.2 double

positive MAITs were indeed present in white matter lesion inflam-

matory infiltrates in all nine multiple sclerosis cases (Fig. 5B and C).

The presence of MAITs in active white matter lesions in the

multiple sclerosis brain suggested their involvement in multiple

sclerosis pathogenesis, based on their cytokine profile, possibly

as proinflammatory effectors.

Circulating mucosal-associated
invariant T cell numbers are
differentially affected by diverse
immunotherapies
We next asked whether depletion of MAITs in the periphery was

specific for the autologous haematopoietic transplantation proto-

col and to which extent other treatments for multiple sclerosis

affected MAIT frequencies. We first confirmed the depletion of

CD161highV�7.2 + CD8 + MAITs from the periphery of AHSCT

patients (Fig. 6A). After AHSCT, the frequencies of CD8 +

MAITs decreased (from a mean 12.1 � 7.4% of CD8 + cells at

baseline, to mean 0.6 � 0.2% at post-therapy follow-up 2 years,

P50.001, Fig. 6B). In contrast, the frequency of CD161highCD8 +

cells, a good surrogate of CD8 + MAITs (Supplementary Fig. 4A) in

the blood of patients treated with IFN-b was unchanged 6 months

after treatment (Supplementary Fig. 5).

We then set out to dissect the effects on MAITs in vivo from

each of the two components of the immunosuppressing condition-

ing regime, cyclophosphamide and alemtuzumab, by studying per-

ipheral blood mononuclear cell samples from patients who had

been treated with either high-dose cyclophosphamide or alemtu-

zumab alone. We measured the frequencies of CD8 + MAITs at

pre-therapy baseline and at 2 years post-therapy in five patients

who underwent immunosuppression with high-dose cyclophos-

phamide. An additional two patients had only pre- or post-therapy

samples available. The CD8 + MAITs were profoundly reduced in

four of six patients, but persisted at high levels post-therapy in

two subjects (Fig. 6C). We also measured MAIT frequency in pa-

tients who received treatment with alemtuzumab monotherapy

(n = 21). Patient samples were taken at different time points
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after the last alemtuzumab infusion (range 2–38 months); how-

ever, the time seemed not to affect the CD8 + MAIT frequencies

within the sampled period as they did not correlate with the time

after treatment (Fig. 6D).

When comparing AHSCT, high-dose cyclophosphamide and

alemtuzumab monotherapy post-treatment samples, MAIT frequen-

cies in both the CD8+ (Fig. 6E) and the CD4�CD8+ (Fig. 6F) cell

subsets, as well as in the total CD3+ population (Fig. 6G) were low

in all three groups, being lowest in the AHSCT-treated patients.

MAITs in all subsets (CD8+
, CD4� and CD3+) were significantly

higher in the high-dose cyclophosphamide patient samples com-

pared with both the AHSCT and alemtuzumab (monotherapy) trea-

ted patients (CD8+ MAITs: P = 0.011; CD4� MAITs: P = 0.004;

CD3+ MAITs: P = 0.002). These results were driven by MAIT num-

bers remaining high in two of six high-dose cyclophosphamide pa-

tients. Whereas the mean frequencies were not statistically different

between AHSCT and alemtuzumab treated patients (t-test, CD8+

MAITs: P = 0.09; CD4� MAITs: P = 0.12: CD3+ MAITs: P = 0.07),

the variance between the two patient groups was different (F-test,

CD8+ MAITs: F5 0.001: CD4� MAITs: F = 0.006: MAIT/total

CD3+: F = 0.012), indicating that the frequencies of all MAIT popu-

lations were differently distributed in the two treatment groups,

with a greater variability of MAIT numbers in the alemtuzumab

monotherapy treated group.

Relationship of circulating
mucosal-associated invariant T cell
frequency with clinical response
to treatment
Our study was not designed to ascertain if a correlation might exist

between the degree of activity after the treatments. We attempted,

however, to detect a potential association by stratifying patients

according to post-therapy circulating CD8 + MAIT frequency and

examining their clinical course. As the putatively therapeutic range

of depletion of MAITs is unknown, we applied statistical cut-off

values to stratify patients in groups having low, intermediate and

high post-therapy MAIT frequencies (Supplementary Fig. 6). The

patients who underwent AHSCT had predominantly low (50.8%)

and none had high (42.38) frequencies of circulating CD8 + MAITs

at any time point post-therapy. There were only two post-therapy

samples that had intermediate (0.8–2.38%) CD8 + MAIT frequency

in the AHSCT cohort (n = 12) and they were the 12-month sample

from Patient CC09 who relapsed at 16 months and the 6-month

sample from Patient CC12 who relapsed at 6 months (CD8 MAIT

frequencies 1.1% in both). Interestingly, CD4 + T cells in the sample

associated with relapse at 6-month follow-up showed a greatly

enhanced proliferation to myelin basic protein (Supplementary

Fig. 7). The remaining two patients who had a relapse after

AHSCT (both at 12 months), however, had low MAIT frequencies

at all the post-transplantation time points assessed. In the high-dose

cyclophosphamide treated cohort (n = 6 with post-therapy samples)

there were two patients (Patients HiCy1 and HiCy2) who had high

MAIT frequency post-therapy (10.4% and 15.7%, respectively).

Notably, they were also the two patients with highest MAIT

frequency at the pretreatment baseline (13.8% and 17.0%,

Figure 4 CD161highCD8 + cells are proinflammatory MAITs.

Characterization of CD161highCD8 + cells in multiple sclerosis

patients. (A) Representative example of cytokine production by

CD8 +CD3 + cells in function of CD161-expression. Peripheral

blood mononuclear cells from patients before treatment were

stimulated in culture with phorbol-12-myristate-13-acetate

(PMA) and ionomycin after overnight recovery in cell incubator.

The contour blots show the production of IFN-�, TNF-�, and IL-

17 by the total CD8 +CD3 + populations, and by CD161high,

CD161dim and CD161� CD8 + T cells. (B–E) The scatter plots

show the percentage of cytokine producing cells in the total

CD8 +CD3 + population, and in CD161high, CD161dim and

CD161� CD8 + T cells: (B) IFN-�, (C) TNF-�, (D) IL-17, and (E)

IL17 + IFN-� + cells. (F) The distribution of CD161high, CD161dim

and CD161neg in the total cytokine-producing population is

shown, and expressed as a percentage of cytokine +CD8 + T cells

(n = 7). Statistical tests performed were non-parametric

ANOVA.
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respectively), and the highest disability both pretreatment

(Expanded Disability Status Scale 7) and post-treatment

(Expanded Disability Status Scale 6.5 and 7, respectively) in the

cohort (Supplementary Table 1). Of these two patients, one

(Patient HiCy1) had a stable post-treatment course; the other

(Patient HiCy2) had a high inflammatory activity in the CNS,

with 20 gadolinium-enhancing lesions at Month 27 post-therapy.

The clinical course post-therapy in high-dose cyclophosphamide

treated patients with intermediate (Patients HiCy3 and HiCy4)

or low (Patients HiCy6 and HiCy9) MAIT frequencies was variable

(Supplementary Table 1). In the larger cohort of alemtuzumab-only

treated patients (n = 18 after excluding three patients who were

being treated with IFN-b at the alemtuzumab baseline, in order to

avoid potential confounding effects on the clinical measures) a fair

range of MAIT levels and of disease activity following therapy were

documented (Supplementary Fig. 6A). Of note, the two patients

with high frequency of CD8 MAITs after alemtuzumab treatment

(Patients Alem10 and Alem20, 3.56% and 7.43% CD8 MAIT at 24

months and 12 months since last infusion of three courses of alem-

tuzumab, 80 months and 66 months since first infusion, respect-

ively) had highly active multiple sclerosis before treatment (both

had three relapses in the preceding 12 months), were at the high

end of the range of disabilities at baseline within the cohort

(Expanded Disability Status Scale 6 and 6.5, respectively) and

relapsed during a long-term post-treatment follow-up (four relapses

and one relapse; annualized relapse rate 0.6 and 0.18, respectively).

Their disability, however, markedly improved after alemtuzumab

treatment; Patient Alem10 had Expanded Disability Status Scale

2.5 and Patient Alem20 had Expanded Disability Status Scale 3.5

at their last assessments (at 80 months and at 74 months, respect-

ively, since the first course of alemtuzumab). In the low- and inter-

mediate CD8 MAIT frequency group there were four patients who

had no relapses post-treatment (two and two, respectively); one or

more relapses post-therapy over a variable duration of follow-up

were documented in five of seven and eight of ten patients in these

groups, respectively (Supplementary Fig. 6B–D).

Discussion
In this study we investigated the immune reconstitution in patients

who underwent non-myeloablative conditioning AHSCT for

Figure 5 CD8 + CD161 + and MAITs are present in perivascular infiltrates within chronic active lesions in the brain of patients with

multiple sclerosis. (A) An example of CD8 + (green) and CD161 + (red) single and double positive cells (indicated by white arrows) within

the inflammatory cellular infiltrates of chronic active white matter (WM) lesions in the brain of a patient with multiple sclerosis. (B and C)

CD161 + (green) and TCRV�7.2 + (red) double positive MAITs are also found in white matter lesions inflammatory infiltrates. Blue (DAPI)

stains all nuclei. All images were acquired at �20 magnification except C at �40. All scale bars = 20 mm. BV = blood vessel.
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treatment of their highly active, conventional treatment-resistant

forms of multiple sclerosis. We observed immunological changes

that were consistent with a favourably redistributed balance of

regulatory versus proinflammatory lymphocytes, resulting from

the relative increase of cells with regulatory profile and the radical,

virtually complete depletion of a CD8 + T cell subset expressing

high levels of CD161 and producing IFN-�, TNF-�, and IL-17.

Based on their chemokine and cytokine receptor profile as well

as its semi-invariant T cell receptor rearrangement, we character-

ized CD8 +CD161high cells as MAITs and demonstrated their pres-

ence in brain white matter lymphomononuclear cell infiltrates in

post-mortem multiple sclerosis white matter tissue, supporting its

potential pathogenic relevance.

Different AHSCT conditioning regimens have been explored for

treatment of aggressive forms of immune-mediated disorders.

Non-myeloablative regimens have been proposed for two main

Figure 6 Effects of high-dose cyclophosphamide monotherapy and alemtuzumab monotherapy on MAIT frequency. MAITs defined by

the expression of V�7.2 and CD161 are reduced following AHSCT and reduced after monotherapy with high-dose cyclophosphamide

(HiCy), and after alemtuzumab alone (Alem). (A) Representative dot plots gated on live CD3 +CD8 + cells, showing expression of

TCRV�7.2 on the x-axis and CD161 on the y-axis. (B) Frequencies of MAITs (V�7.2 +CD161high) in patients with multiple sclerosis before

and after AHSCT. Note the segmented y-axis. Pretreatment (PreTx) n = 10, 6 months (6 mo) n = 9, 1 year (1 yr) n = 7, 2 years (2 yrs)

n = 3. Statistical test was repeated measures-ANOVA. (C) Frequencies of MAITs in patients with multiple sclerosis before and after

receiving high-dose cyclophosphamide. Patients with samples available at both time points are connected with a line. Note the segmented

y-axis. Pretreatment (PreTx) n = 6, 2 years (2 yrs) n = 6. Statistical test performed was paired t-test. (D) Frequency of CD8 + MAITs in

peripheral blood mononuclear cells of patients (n = 21) collected at different time points after their last infusion of alemtuzumab. The

middle line represents the mean and the sideline the confidence interval (95% onfidsence interval). (E–G) Comparison of MAIT fre-

quencies in patients receiving AHSCT (n = 11, range 6–24 months post-therapy) monotherapy with either high-dose cyclophosphamide

(HiCy, n = 6, 24 months post-therapy) or alemtuzumab (Alem, n = 21, range 2–38 after last infusion).
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reasons: (i) the treatment should primarily target the lymphoid,

not the myeloid compartment; and (ii) improved safety and toler-

ability facilitate treating patients during the appropriate window of

therapeutic opportunity at earlier stages of disease (Burt et al.,

2008). A recent clinical trial showed that non-myeloablative

AHSCT can arrest or reverse neurological deterioration in patients

with highly active, treatment-resistant relapsing-remitting multiple

sclerosis with acceptable safety (Burt et al., 2009). Here we

investigated key aspects of immune reconstitution in 12 patients,

who had all received the same (cyclophosphamide/alemtuzumab)

non-myeloablative conditioning regimen in that trial.

Analysis of the naı̈ve and memory T cell repertoire after non-

myeloablative conditioning AHSCT revealed a markedly different

quality of immune reconstitution when compared with our previ-

ous study of a myeloablative conditioning regimen using cyclo-

phosphamide and total body irradiation (Muraro et al., 2005).

Whereas naı̈ve T cells following cyclophosphamide and total

body irradiation had a biphasic reconstitution with initial depletion

followed by recovery and increase to twice their baseline fre-

quency (Muraro et al., 2005), in the present study the frequencies

of naı̈ve CD4 + T cells and of naı̈ve CD8 + T cells were unchanged

and reduced throughout the post-therapy follow-up. We detected,

however, a moderate but statistically significant degree of CD4 +

recent thymic emigrant expansion during the first year of follow-

up, demonstrating a degree of reactivation of the thymus.

Together, these results suggest that the non-myeloablative condi-

tioning regimen that we investigated in our study induced a less

extensive replacement of the mature T cell repertoire than the

previously reported myeloablative regimen. We have used CD31

as an established marker to enumerate T cells recently differen-

tiated from haematopoietic stem cells; however, these methods

cannot distinguish whether the haematopoietic stem cells were

survivors from the bone marrow or from the infused autologous

graft. Since a non-myeloablative conditioning protocol by defin-

ition causes minimal bone marrow suppression, it is likely that

haematopoietic stem cells from both the patient’s bone marrow

and the graft contribute to immune reconstitution.

These results prompted us to hypothesize that the therapeutic

effect of AHSCT on CNS inflammation in multiple sclerosis may

not require a complete renewal of the T cell repertoire but could

be mediated by the normalization of a balance between pro-

inflammatory and immunoregulatory cells. Abnormalities in the

number or function of CD4 + regulatory cells have been previously

reported in multiple sclerosis (Viglietta et al., 2004; Venken et al.,

2008). Our longitudinal analysis of regulatory T cell frequency

showed a significant surge in CD4 + CD25 + CD127�FoxP3 + cell

proportions relatively early (6 months) post-transplantation.

These results are consistent with previous work in juvenile idio-

pathic arthritis and in systemic lupus erythematosus, suggesting

that recovery of CD4 +CD25high T cells might play a role in the

mode of action of AHSCT (de Kleer et al., 2006; Alexander et al.,

2009). Expansion of CD4 + regulatory T cells has also been shown

after alemtuzumab monotherapy (Cox et al., 2005) leaving open

the possibility that increased regulatory T cell numbers are part of

a common response following intensive lymphodepletion.

We considered the possibility that the transiently increased

numbers of regulatory T cells after AHSCT were the result of a

boosted homeostatic proliferation at 6 months. Regulatory T cells

had a higher proliferation than the whole CD4 + population at

baseline and there was no change at 6 months post-therapy, des-

pite that the total CD4 + patient population was proliferating

much more actively than at baseline. These results suggest that

increased active proliferation did not account for the higher num-

bers of regulatory T cells post-transplantation; rather, it appears

that regulatory T cells either are more resistant to the immuno-

suppressive regime or they recommence to be exported from the

thymus and steadily proliferate in the periphery, with a gain of

their relative proportion in the lymphopenic CD4 + compartment,

which is likely to give them a regulatory advantage over re-emer-

ging effector T cells.

We also describe a transient increase of CD56high natural killer

cells, a natural killer cell subset with immunoregulatory potential

(Jiang et al., 2011). CD56high natural killer cells have been

reported to expand and mediate therapeutic effects in patients

with multiple sclerosis treated with daclizumab (Bielekova et al.,

2006) and IFN-b (Vandenbark et al., 2009). We speculate that the

early expansion of CD4 + regulatory T cells and regulatory CD56high

natural killer cells may be important for the control of the immune

system during the early antigen priming of re-emerging lympho-

cytes, as previously suggested (O’Gorman et al., 2009).

Next, we focused our analyses on the functional significance of

different types of phenotypic CD8 + T cell effector memory cell

subpopulations, which demonstrated significant changes in their

frequencies in pre- to post-AHSCT blood samples. We have pre-

viously reported a prominent increase of CD57 + CD28�CD8 +

T cells, a subset of CD8 + T cells with proposed suppressor func-

tion (Mollet et al., 1998), after myeloablative AHSCT (Muraro

et al., 2005). We have reproduced and extended this observation

in the present study of non-myeloablative AHSCT. CD8 +CD57 +

T cells were significantly and persistently increased throughout the

post-transplantation follow-up. Functional characterization of

CD57� and CD57 + CD8 T cells through co-culture suppression

assays showed that although both populations contained cells with

suppressive activity, the suppressive effect of CD57 +CD8 + cells

was variable and either much greater or equal to their CD57�

counterpart. This variability suggested that CD57 may not be

per se a marker defining immunoregulatory CD8 + T cells.

Interestingly, we observed that ILT2, a marker associated with

regulatory function, is expressed by a majority of CD57 + CD8 +

cells and is differentially regulated during the post-AHSCT

follow-up (data not shown). Further work is required to define

the key determinants of regulatory activity of cell populations

within the CD8 +CD57 + subset.

Our detailed characterization of CD8 + T cell reconstitution

included several natural killer markers known to be expressed on

T, natural killer T and natural killer-like T cells (data not shown)

and revealed that a CD161highCD8 + T subset, readily detectable in

all patients before treatment, was radically depleted after AHSCT.

We also demonstrate that 490% of the CD161highCD8 + cell

population in multiple sclerosis patients express TCRV�7.2 and

IL-18R�, and therefore represent MAITs, a subset recently

described for their antimicrobial activity (Le Bourhis et al., 2010;

Kjer-Nielsen et al., 2012). MAITs have been described as non-

cycling, tissue-targeted cells that secrete IL-17 and express high
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levels of the multiple drug transporter protein ABCB1, which con-

fers them resistance to ABCB1-effluxed chemotherapy (Dusseaux

et al., 2011). We confirmed that high expression of CD161 de-

fines a proinflammatory CD8 + memory MAIT population that pro-

duces IFN-� and contains the IL-17 producing CD8 + T cells in

patients with multiple sclerosis, in agreement with recent studies

describing CD161high cells as a chemotherapy-resistant and tissue-

homing proinflammatory CD8 + subpopulation (Turtle et al., 2009;

Billerbeck et al., 2010). These MAITs likely possess some plasticity

depending on the inflammatory environment; it was recently

shown that their IL-17 production was enhanced by co-stimulation

with IL-1b, whereas presence of IL-12 induced a Tc1-like function

(Turtle et al., 2011). Our description of a post-treatment depletion

of CD8 + T cells that produce IL-17 (Tc17) is novel and comple-

mentary to recent data from a study of AHSCT employing a high-

intensity immunosuppressive protocol. Darlington et al. (2013)

demonstrate that the capacity to mount Th17 responses is dimin-

ished post-therapy, although the Th1 responses remain unaltered.

Together, their study and ours suggest that alterations of the Th17

and of the Tc17 pathways might be critically involved in the thera-

peutic mechanism of AHSCT in multiple sclerosis.

The demonstration that MAITs are pro-inflammatory contrasts

with the interpretation of Miyazaki et al. (2011) who despite

describing MAITs as a population that secrete high levels of proin-

flammatory cytokines IL-17 and IFN-�, interpret them as immu-

noregulatory cells able to suppress Th1 responses in multiple

sclerosis. We believe that without supportive data from intracellu-

lar cytokine staining assays it is difficult to ascertain whether

MAITs truly inhibit IFN-� production from T cells. The interpret-

ation of results from their co-culture system is made problematic

by the fact that ‘MAIT-depletion’ in their co-culture assays was

performed by depletion of CD161 expressing cells, and thus would

have depleted not only CD161high MAITs, but also the widely

present CD161dim effector CD4 (IFN-� and IL-17 producing

cells, and even some regulatory populations), cytotoxic CD8

T cells including CD57 +CD8 + cells, and natural killer cells. After

the depletion of several functionally important cell subsets, it is

difficult to define the effect of any one specific cell population.

In our study, by intracellular cytokine staining and selective gating

on CD161high, -dim and -negative cells we demonstrate produc-

tion of IL-17, IFN-� and TNF-� and no production of IL-10 by

CD161high cells, consistent with a pro-inflammatory function

and in agreement with a majority of other studies (Billerbeck

et al., 2010; Annibali et al., 2011; Dusseaux et al., 2011;

Walker et al., 2012).

The involvement of IL-17 producing CD161highCD8 + T cells in

multiple sclerosis pathology is plausible when considering that the

majority (470%) of CD8 T cells in acute and chronic active mul-

tiple sclerosis lesions were reported to express IL-17 (Tzartos et al.,

2008). The potential relevance of CD161highCD8 + cells in multiple

sclerosis was recently underpinned by the study by Annibali et al.

(2011) that showed that the expression of KLRB1, the gene

coding for CD161 and one of the non-major histocompatibility

complex risk alleles with the highest statistical association to mul-

tiple sclerosis (Hafler et al., 2007), was increased in affected

monozygotic twins as compared to their healthy co-twins. In

that study, the frequency of CD161 + cells in the CD8 + T cell

subset was significantly increased in the blood of patients with

multiple sclerosis when compared with healthy controls.

Furthermore, CD161 +CD8 + T cells were detected amongst

tissue-infiltrating cells in post-mortem multiple sclerosis brain

tissue (Annibali et al., 2011).

Here, by examining immune cell infiltrates in post-mortem mul-

tiple sclerosis brain white matter tissue from cases with high levels

of inflammation we confirm that MAITs are present in white

matter lesions, as predicted from their tissue-homing receptor pro-

file. In a separate study extensively characterizing CD161 +

lymphocytes in multiple sclerosis tissue we have quantified the

number of MAITs in the white matter as well as in the meningeal

inflammatory infiltrates, where they represented 17% and 8% of

total CD161 + cells, respectively (Carassiti et al., manuscript sub-

mitted). These data extend the previous demonstration of the

TCRV�7.2J�33-transcript in white matter lesions (Illes et al.,

2004), and their frequency in highly active cases’ lesions suggest

that MAITs are probably implicated in the development of CNS

immune-mediated injury in multiple sclerosis.

CD161highCD8 + MAITs express CCR6, a receptor that is

involved in transmigration of T cells into the CNS and in the ini-

tiation of experimental autoimmune encephalomyelitis (Reboldi

et al., 2009). CD161 itself also plays a role in trans-endothelial

migration of T cells (Poggi et al., 1997). MAITs produce high

levels of inflammatory cytokines IFN-� and TNF-�, and are the

highest CD8 + producers of IL-17; IL-17R is expressed on blood–

brain barrier epithelial cells in multiple sclerosis lesions and IL-17

increases the permeability of the barrier (Kebir et al., 2007).

Furthermore, the commensal gut flora has been shown to enhance

the IL-17 response and to be required for the development of

myelin-specific autoimmunity in an experimental model of demye-

lination (Berer et al., 2011), which corroborates the implication of

gut immunity in autoimmune disease. Taken together, these stu-

dies and our own data strongly suggest an important role for

CD161highCD8 + MAITs in multiple sclerosis pathogenesis.

It was, therefore, of great interest to consider to which extent

the two principal components of the immunoablative chemo–

biological therapy conditioning regimen, high-dose cyclophospha-

mide and alemtuzumab contributed to the observed depletion of

MAITs. We hence obtained peripheral blood mononuclear cell

from patients treated in a protocol using high-dose cyclophospha-

mide at Johns Hopkins University, USA; and in a protocol of

alemtuzumab at the University of Cambridge, UK. There was no

post-therapy depletion of MAITs in two of six analysed high-dose

cyclophosphamide treated patients. The frequency of MAITs

peripheral blood mononuclear cells obtained from patients treated

with alemtuzumab was not statistically different from AHSCT trea-

ted patients although the significantly greater variance suggested

that the frequency was higher in some alemtuzumab monother-

apy-treated individual. This variance was independent of the time

since the last treatment infusion. Our data suggest that both high-

dose cyclophosphamide and alemtuzumab alone have the poten-

tial to deplete circulating MAITs but larger numbers of cells may

escape depletion from either treatment alone than from autolo-

gous haematopoietic stem cell transplantation with a conditioning

regimen that includes both cyclophosphamide and alemtuzumab.

Based on our data we speculate that alemtuzumab may account
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for the majority of the MAIT-depleting effect, but that the

combination of alemtuzumab with cyclophosphamide in the trans-

plantation conditioning regime (which was also preceded by a few

weeks by the use of cyclophosphamide for haematopoietic cell

mobilization, which may contribute to the ablative effect) may

have additive or synergistic effects, resulting in a more complete

depletion.

Differentiating responders and non-responders to a given treat-

ment and measuring potentially relevant biological variables might

allow us to gain valuable insight into its mechanism of action.

Dichotomizing clinical responses to therapy, however, is not

always straightforward. Clinical and MRI follow-up of the

AHSCT patients showed complete disease remission post-therapy

in 8 of 12 patients. Four patients had a single relapse during

the first 2 years post-transplantation (versus two relapses each in

the 12 months before transplantation) yet at the end of the

524 month follow-up post-AHSCT the Expanded Disability

Status Scale scores of all relapsing patients were either improved

(n = 3) or unchanged (n = 1) compared to pretreatment baseline,

suggesting that their multiple sclerosis course had been stabilized

or at least attenuated. For the interpretation of our immunological

studies, therefore, we felt more appropriate to regard the clinical

outcomes in these four patients as partial/incomplete responses

rather than treatment failure, and we show here the immunolo-

gical results from all patients conjointly. We applied the same con-

sideration to the other treatments. Indeed, stratification analysis

showed no statistically significant differences between the com-

plete and partial responders groups in any of the immune param-

eters being investigated (data not shown), including recovery of

CD4 + T cell numbers and CD4/8 ratios that were recently

described as surrogate marker of treatment response to alemtuzu-

mab (Cossburn et al., 2013), although we cannot rule out that

some differences might have been detected if larger numbers of

patients had been available.

Based on the pro-inflammatory profile of MAITs, their radical

post-therapy depletion of MAITs observed after AHSCT and the

more variable depletion observed after other treatments we

hypothesized that their frequency might align most closely with

therapeutic efficacy. Our study had not been designed to examine

a correlation of MAIT numbers and clinical or imaging response to

treatment and was statistically underpowered to detect such po-

tential correlations. Only a descriptive analysis of a potential asso-

ciation, therefore, was performed. In the AHSCT cohort, it was of

note that the only two post-therapy samples in which CD8 +

MAITs frequency exceeded 1% (1.1% in both) were from two

time points of two patients who subsequently had a relapse.

Interestingly, we detected enhanced T cell reactivity to myelin

basic protein at one of these time points. In the high-dose cyclo-

phosphamide cohort, one of two patients with high (410%)

CD8 + MAIT frequency post-therapy had an inflammatory flare

with high number of enhancing lesions; the other patient re-

mained stable. In the alemtuzumab cohort, the two patients

with high CD8 + MAIT frequency post-therapy (3.6% and

7.4%) both had relapses post-therapy, although their annualized

relapse rate post-treatment was much lower than in the

12 months preceding treatment with alemtuzumab. Interestingly,

all four patients with high MAIT frequency post-therapy in the

high-dose cyclophosphamide, and in the alemtuzumab cohorts,

had high disability levels pretreatment, although disability im-

proved (even if relapses occurred) in the two patients who

received alemtuzumab, which has been suggested to exert neuro-

protective effects in vivo based on the demonstration of induction

of neurotrophic mediators in vitro (Jones et al., 2010).

Although these observations are intriguing and support the im-

plication that MAITs are active perpetrators of inflammatory dis-

ease activity in multiple sclerosis, it should be noted that in all

three cohorts (AHSCT, high-dose cyclophosphamide and alemtu-

zumab), there were patients with low circulating MAITs who had

relapses or MRI activity post-therapy; and there was one case

(Patient HiCy1) who had high circulating MAIT frequency yet

remained clinically stable. These observations suggest that there

is no exclusive association of low frequency of circulating MAITs

with disease remission; or exclusive association of high frequency

of circulating MAITs with disease relapse. The results, therefore,

should be interpreted with caution. Future studies in larger

numbers of patients, with prospective enumeration of MAITs

and clinical monitoring before and during treatment are warranted

to establish if a correlation of MAIT number and clinical course

exists. These studies could address the hypotheses generated from

the present study that MAITs are implicated as detrimental inflam-

matory mediators of disease and may represent a biomarker of

treatment response in multiple sclerosis.

In conclusion, our data show significant qualitative and func-

tional changes in the reconstituted immune response following

the non-myeloablative AHSCT regimen. Data on differentiation

factors describing a reciprocal relationship between regulatory

T cells and Th17 cells (Bettelli et al., 2007; Mucida et al., 2007)

suggest that the balance between regulatory and pro-inflamma-

tory cells is reset by tightly controlled processes that coordinate

functional differentiation of lymphocytes during immune reconsti-

tution. Indeed, following AHSCT we demonstrate increased num-

bers of circulating cells with regulatory potential as well as the

effective depletion of a pro-inflammatory IL-17, TNF-� and IFN-

�-producing CD8 + cell subset, which corresponds phenotypically

and functionally to the recently described gut-derived MAIT popu-

lation. We further show that CD8 + MAITs, which express CCR6,

infiltrate multiple sclerosis lesion tissue. Taken together, our results

suggest that CD8 + MAITs might be involved in multiple sclerosis

as inflammatory mediators and could represent a disease and a

treatment biomarker as well as, potentially, a therapeutic target.
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