2,491 research outputs found

    Caltech Faint Galaxy Redshift Survey XV: Classification of Galaxies with 0.2 < z < 1.1 in the Hubble Deep Field (North) and its Flanking Fields

    Get PDF
    To circumvent the spatial effects of resolution on galaxy classification, the images of 233 objects of known redshift in the Hubble Deep Field (HDF) and its Flanking Fields (FF) that have redshifts in the range 0.20 < z < 1.10 were degraded to the resolution that they would have had if they were all located at a redshift z= 1.00. As in paper XIV of the present series, the effects of shifts in rest wavelength were mitigated by using R-band images for the classification of galaxies with 0.2 < z < 0.6 and I-band images for objects with redshifts 0.6 < z < 1.1. A special effort was made to search for bars in distant galaxies. The present data strongly confirm the previous conclusion that the Hubble tuning fork diagram only provides a satisfactory framework for the classification of galaxies with z ~< 0.3. More distant disk galaxies are often difficult to shoehorn into the Hubble classification scheme. The paucity of barred spirals and of grand-design spirals at large redshifts is confirmed. It is concluded that the morphology of disk galaxies observed at look-back times smaller than 3--4 Gyr differs systematically from that of more distant galaxies viewed at look-back times of 4--8 Gyr. The disks of late-type spirals at z >0.5 are seen to be more chaotic than those of their nearer counterparts. Furthermore the spiral structure in distant early-type spirals appears to be less well-developed than it is in nearby early-galaxies.Comment: Accepted for publication in the A

    Differential rates of perinatal maturation of human primary and nonprimary auditory cortex

    Get PDF
    Abstract Primary and nonprimary cerebral cortex mature along different timescales; however, the differences between the rates of maturation of primary and nonprimary cortex are unclear. Cortical maturation can be measured through changes in tissue microstructure detectable by diffusion magnetic resonance imaging (MRI). In this study, diffusion tensor imaging (DTI) was used to characterize the maturation of Heschl’s gyrus (HG), which contains both primary auditory cortex (pAC) and nonprimary auditory cortex (nAC), in 90 preterm infants between 26 and 42 weeks postmenstrual age (PMA). The preterm infants were in different acoustical environments during their hospitalization: 46 in open ward beds and 44 in single rooms. A control group consisted of 15 term-born infants. Diffusion parameters revealed that (1) changes in cortical microstructure that accompany cortical maturation had largely already occurred in pAC by 28 weeks PMA, and (2) rapid changes were taking place in nAC between 26 and 42 weeks PMA. At term equivalent PMA, diffusion parameters for auditory cortex were different between preterm infants and term control infants, reflecting either delayed maturation or injury. No effect of room type was observed. For the preterm group, disturbed maturation of nonprimary (but not primary) auditory cortex was associated with poorer language performance at age two years

    VolumeViewer: An Interactive Tool for Fitting Surfaces to Volume Data

    Get PDF
    Recent advances in surface reconstruction algorithms allow surfaces to be built from contours lying on non-parallel planes. Such algorithms allow users to construct surfaces of similar quality more efficiently by using a small set of oblique contours, rather than many parallel contours. However, current medical imaging systems do not provide tools for sketching contours on oblique planes. In this paper, we take the first steps towards bridging the gap between the new surface reconstruction technologies and putting those methods to use in practice. We develop a novel interface for modeling surfaces from volume data by allowing the user to sketch contours on arbitrarily oriented cross-sections of the volume, and we examine the users\u27 ability to contour the same structures using oblique cross-sections with similar consistency as they can using parallel cross-sections. We measure the inter-observer and intra-observer variability of trained physicians contouring on oblique cross-sections of real patient data as compared to the traditional parallel cross-sections, and show that the variation is much higher for oblique contouring. We then show that this variability can be greatly reduced by integrating a collection of training images into the interface

    The course and correlates of everyday functioning in schizophrenia

    Get PDF
    AbstractPreviously institutionalized older patients with schizophrenia show changes in cognitive and functional capacity over time. This study examined changes in real-world functioning in a sample of people with schizophrenia who varied in their history of long-term institutionalization and related changes in real world functioning to changes in cognition and functional capacity over the follow-up period.Older patients with schizophrenia (n=111) were examined with assessments of cognitive functioning, functional capacity, clinical symptoms, and everyday functioning. They were then followed up to 45 months and examined up to two times. Mixed-model regression was used to examine changes in real-world functioning in social, everyday living, and vocational domains over the follow-up period and identify potential predictors of change.Everyday functioning worsened over time in all three domains. Although length of longest hospitalization predicted worsening, this influence was eliminated when the course of functional capacity was used to predict the course of everyday functioning. For both vocational and everyday living domains, as well as the composite score on functional status, worsening in performance based measures of everyday functioning and social competence predicted worsening in real world functioning. Changes in negative symptoms further predicted worsening in the everyday living domain.Worsening in everyday functioning is found in people with schizophrenia and those with a history of greater chronicity and severity of illness seem more affected. These influences seem to be expressed through worsening in the ability to perform everyday functional skills. Potential causes of these changes and implications for reducing these impairments are discussed

    Simulation-free radiation therapy: An emerging form of treatment planning to expedite plan generation for patients receiving palliative radiation therapy

    Get PDF
    PURPOSE: Herein we report the clinical and dosimetric experience for patients with metastases treated with palliative simulation-free radiation therapy (SFRT) at a single institution. METHODS AND MATERIALS: SFRT was performed at a single institution. Multiple fractionation regimens were used. Diagnostic imaging was used for treatment planning. Patient characteristics as well as planning and treatment time points were collected. A matched cohort of patients with conventional computed tomography simulation radiation therapy (CTRT) was acquired to evaluate for differences in planning and treatment time. SFRT dosimetry was evaluated to determine the fidelity of SFRT. Descriptive statistics were calculated on all variables and statistical significance was evaluated using the Wilcoxon signed rank test and RESULTS: Thirty sessions of SFRT were performed and matched with 30 sessions of CTRT. Seventy percent of SFRT and 63% of CTRT treatments were single fraction. The median time to plan generation was 0.88 days (0.19-1.47) for SFRT and 1.90 days (0.39-5.23) for CTRT ( CONCLUSIONS: Palliative SFRT is an emerging technique that allowed for a statistically significant lower time to plan generation and was dosimetrically acceptable. This benefit must be weighed against increased total treatment time for patients receiving SFRT compared with CTRT, and appropriate patient selection is critical

    Structural and Photometric Classification of Galaxies - I. Calibration Based on a Nearby Galaxy Sample

    Full text link
    In this paper we define an observationally robust, multi-parameter space for the classification of nearby and distant galaxies. The parameters include luminosity, color, and the image-structure parameters: size, image concentration, asymmetry, and surface brightness. Based on an initial calibration of this parameter space using the ``normal'' Hubble-types surveyed by Frei et al. (1996), we find that only a subset of the parameters provide useful classification boundaries for this sample. Interestingly, this subset does not include distance-dependent scale parameters, such as size or luminosity. The essential ingredient is the combination of a spectral index (e.g., color) with parameters of image structure and scale: concentration, asymmetry, and surface-brightness. We refer to the image structure parameters (concentration and asymmetry) as indices of ``form.'' We define a preliminary classification based on spectral index, form, and surface-brightness (a scale) that successfully separates normal galaxies into three classes. We intentionally identify these classes with the familiar labels of Early, Intermediate, and Late. This classification, or others based on the above four parameters can be used reliably to define comparable samples over a broad range in redshift. The size and luminosity distribution of such samples will not be biased by this selection process except through astrophysical correlations between spectral index, form, and surface-brightness.Comment: to appear in AJ (June, 2000); 34 pages including 4 tables and 12 figure
    • …
    corecore