12 research outputs found

    Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment

    No full text
    OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (&#956;m) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface

    Molecular tools for preventing and improving diagnosis of peri‐implant diseases

    No full text
    Peri-implantitis is an inflammatory disease of tissues surrounding osseointegrated dental implants. Inflammation affecting soft and hard peri-implant tissues can cause alveolar bone resorption and subsequent implant loss. Clinical surveillance and early diagnosis are of paramount importance to reduce clinical failures and improve implant survival. Current diagnosis of implants is based on clinical and radiological signs. Molecular tests are an emerging diagnostic methodology, which potentially can help to detect and prevent early peri-implantitis and monitor the efficacy of therapy as well. A plethora of potential biomarkers are potentially available to support the clinical diagnosis of peri-implantitis. However, conflicting diagnostic conclusions have been reached, probably related to weak statistical results due to limited sample size or disease heterogeneity. The present paper reviews candidate diagnostic biomarkers for peri-implantitis, including infective agents, genetic susceptibility factors, and key proteins related to inflammation and tissue remodeling
    corecore