20 research outputs found

    Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder

    Get PDF
    Background: Apparently balanced chromosomal rearrangements can be associated with an abnormal phenotype, including intellectual disability and autism spectrum disorder (ASD). Genome-wide microarrays reveal cryptic genomic imbalances, related or not to the breakpoints, in 25% to 50% of patients with an abnormal phenotype carrying a microscopically balanced chromosomal rearrangement. Here we performed microarray analysis of 18 patients with ASD carrying balanced chromosomal abnormalities to identify submicroscopic imbalances implicated in abnormal neurodevelopment. Methods: Eighteen patients with ASD carrying apparently balanced chromosomal abnormalities were screened using single nucleotide polymorphism (SNP) arrays. Nine rearrangements were de novo, seven inherited, and two of unknown inheritance. Genomic imbalances were confirmed by fluorescence in situ hybridization and quantitative PCR. Results: We detected clinically significant de novo copy number variants in four patients (22%), including three with de novo rearrangements and one with an inherited abnormality. The sizes ranged from 3.3 to 4.9 Mb; three were related to the breakpoint regions and one occurred elsewhere. We report a patient with a duplication of the Wolf-Hirschhorn syndrome critical region, contributing to the delineation of this rare genomic disorder. The patient has a chromosome 4p inverted duplication deletion, with a 0.5 Mb deletion of terminal 4p and a 4.2 Mb duplication of 4p16.2p16.3. The other cases included an apparently balanced de novo translocation t(5;18)(q12;p11.2) with a 4.2 Mb deletion at the 18p breakpoint, a subject with de novo pericentric inversion inv(11)(p14q23.2) in whom the array revealed a de novo 4.9 Mb deletion in 7q21.3q22.1, and a patient with a maternal inv(2)(q14.2q37.3) with a de novo 3.3 Mb terminal 2q deletion and a 4.2 Mb duplication at the proximal breakpoint. In addition, we identified a rare de novo deletion of unknown significance on a chromosome unrelated to the initial rearrangement, disrupting a single gene, RFX3. Conclusions: These findings underscore the utility of SNP arrays for investigating apparently balanced chromosomal abnormalities in subjects with ASD or related neurodevelopmental disorders in both clinical and research settings

    Applications de la cytogénétique moléculaire à l'étude de pathologies humaines

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    A locus for sacral/anorectal malformations maps to 6q25.3 in a 0.3 Mb interval region

    No full text
    International audiencePartial absence of the sacrum is a rare congenital defect that also occurs as an autosomal-dominant trait, whereas imperforate/ectopic anus is a relatively common malformation, usually observed in multiple congenital anomalies syndromes. We report on a girl born to healthy consanguineous parents (first cousins once removed) with anal imperforation and associated rectovaginal fistula and partial sacral agenesis. Facial dysmorphism included a high forehead, epicanthic folds, downslanting palpebral fissures, hypertelorism and a depressed nasal root. Brain MRI showed a bilateral opercular dysplasia with a unilateral (right) pachygyria; MRI and X-ray imaging of the spine disclosed a tethered cord associated with partial sacral agenesis. She showed a moderate developmental delay. Ophthalmologic examination evidenced bilateral microphthalmos and relative microcornea. Cytogenetic studies in our patient disclosed a pure de novo 6q25.3 --> qter deletion. By genotype analysis, we detected in our patient a maternal allele loss encompassing D6S363 and D6S446. Pure distal 6q deletion is a rare anomaly, reported in association with sacral/anorectal malformations (sacral agenesis, anal imperforation/ectopia) and never with cortical dysplasia. Pooling deletion mapping information in patients with pure terminal and interstitial 6q deletion allowed us to define a critical region spanning 0.3 Mb between the markers D6S959 and D6S437 for sacral/anal malformations. We hypothesize that haploinsufficiency for a gene within the deleted region may impair normal development of caudal structures, possibly acting on the notochordal development. European Journal of Human Genetics (2006) 14, 971-974. doi:10.1038/sj.ejhg.5201635; published online 17 May 2006

    Molecular characterization of a de novo 6q24.2q25.3 duplication interrupting UTRN in a patient with arthrogryposis.

    Get PDF
    International audienceChromosome 6q duplications have been documented repeatedly, allowing the delineation of a "6q duplication syndrome," characterized by hypertelorism, downslanting palpebral fissures, tented upper lip, short neck, severe mental and growth retardation, and joint contractures. Most reported cases result from malsegregation of a reciprocal translocation leading to a terminal 6q duplication and partial monosomy of another chromosome. Only 11 cases of de novo pure duplication have been reported so far. The breakpoints do not appear to be recurrent, but in most cases they have not been characterized molecularly, precluding genotype-phenotype correlation. We report on an 8-year-old girl with a phenotype consistent with mild 6q duplication syndrome, including characteristic physical findings, mild mental retardation, and joint contractures. She carries a 13 Mb de novo 6q24.2q25.3 duplication, diagnosed by high-resolution karyotype and confirmed by array-CGH. Molecular characterization of the duplicated segment with quantitative PCR showed that the proximal breakpoint is localized within the UTRN gene, encoding utrophin, the autosomal homologue of dystrophin. We discuss the possible implication of UTRN in arthrogryposis associated with duplications spanning the 6q23q26 region

    2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features?

    Get PDF
    International audienceBACKGROUND: Genome-wide screening of patients with mental retardation using array comparative genomic hybridisation (CGH) has identified several novel imbalances. With this genotype-first approach, the 2q22.3q23.3 deletion was recently described as a novel microdeletion syndrome. The authors report two unrelated patients with a de novo interstitial deletion mapping in this genomic region and presenting similar "pseudo-Angelman" phenotypes, including severe psychomotor retardation, speech impairment, epilepsy, microcephaly, ataxia, and behavioural disabilities. METHODS: The microdeletions were identified by array CGH using oligonucleotide and bacterial artificial chromosome (BAC) arrays, and further confirmed by fluorescence in situ hybridisation (FISH) and semi-quantitative polymerase chain reaction (PCR). RESULTS: The boundaries and sizes of the deletions in the two patients were different but an overlapping region of about 250 kb was defined, which mapped to 2q23.1 and included two genes: MBD5 and EPC2. The SIP1 gene associated with the Mowat-Wilson syndrome was not included in the deleted genomic region. DISCUSSION: Haploinsufficiency of one of the deleted genes (MBD5 or EPC2) could be responsible for the common clinical features observed in the 2q23.1 microdeletion syndrome, and this hypothesis needs further investigation

    Inversion duplication deletions involving the long arm of chromosome 13: phenotypic description of additional three fetuses and genotype-phenotype correlation.

    No full text
    International audienceInversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies

    Application of a new molecular technique for the genetic evaluation of products of conception

    No full text
    Objectives: Karyotyping is a well-established method of investigating the genetic content of product of conceptions (POCs). Because of the high rate of culture failure and maternal cell contamination, failed results or 46,XX findings are often obtained. Different molecular approaches that are not culture dependent have been proposed to circumvent these limits. On the basis of the robust experience previously obtained with bacterial artificial chromosomes (BACs)-on-Beads™ (BoBs™), we evaluated the same technology that we had used for the analysis of prenatal samples on POCs. Method: KaryoLite™ BoBs™ includes 91 beads, each of which is conjugated with a composite of multiple neighboring BACs according to the hg19 assembly. It quantifies proximal and terminal regions of each chromosome arm. The study included 376 samples. Results: The failure rate was 2%, and reproducibility >99%; false-positive and false-negative rates wer
    corecore