16 research outputs found

    Alkali Dispersion in (Ag,Cu)(In,Ga)Se-2 Thin Film Solar Cells-Insight from Theory and Experiment

    Get PDF
    Silver alloying of Cu(In,Ga)Se-2 absorbers for thin film photovoltaics offers improvements in open-circuit voltage, especially when combined with optimal alkali-treatments and certain Ga concentrations. The relationship between alkali distribution in the absorber and Ag alloying is investigated here, combining experimental and theoretical studies. Atom probe tomography analysis is implemented to quantify the local composition in grain interiors and at grain boundaries. The Na concentration in the bulk increases up to similar to 60 ppm for [Ag]/([Ag] + [Cu]) = 0.2 compared to similar to 20 ppm for films without Ag and up to similar to 200 ppm for [Ag]/([Ag] + [Cu]) = 1.0. First-principles calculations were employed to evaluate the formation energies of alkali-on-group-I defects (where group-I refers to Ag and Cu) in (Ag,Cu)(In,Ga)Se-2 as a function of the Ag and Ga contents. The computational results demonstrate strong agreement with the nanoscale analysis results, revealing a clear trend of increased alkali bulk solubility with the Ag concentration. The present study, therefore, provides a more nuanced understanding of the role of Ag in the enhanced performance of the respective photovoltaic devices
    corecore