10 research outputs found

    Effet Seebeck à l’échelle nanométrique de nanostructures chaudes

    No full text
    The aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA.L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'AD

    Nanoscale Seebeck effect at hot nanostructures

    No full text
    L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADNThe aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA

    Nanoscale Seebeck effect at hot nanostructures

    No full text
    L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADNThe aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA

    Nanoscale Seebeck effect at hot nanostructures

    No full text
    L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADNThe aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA

    Nanoscale Seebeck effect at hot nanostructures

    No full text
    L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADNThe aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA

    Nanoscale Seebeck effect at hot nanostructures

    No full text
    L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADNThe aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA

    Hydrodynamic interactions in DNA thermophoresis

    No full text
    We theoretically study the molecular-weight dependence of DNA thermophoresis, which arises from mutual advection of the n repeat units of the molecular chain. As a main result we find that the dominant driving forces, i.e., the thermally induced permittivity gradient and the electrolyte Seebeck effect, result in characteristic hydrodynamic screening. In comparison with recent experimental data on single-stranded DNA (2 ≤ n ≤ 80), our theory quantitatively describes the increase of the drift velocity up to n = 30; the slowing-down of longer molecules is well accounted for by a simple model for counterion condensation. It turns out that thermophoresis may change sign as a function of n: For an appropriate choice of the salt-specific Seebeck coefficient, short molecules move to the cold and long ones to the hot; this could be used for separating DNA by molecular weight.Effets thermoélectriques à l'échelle nan

    Hydrodynamic interactions in DNA thermophoresis

    No full text
    We theoretically study the molecular-weight dependence of DNA thermophoresis, which arises from mutual advection of the n repeat units of the molecular chain. As a main result we find that the dominant driving forces, i.e., the thermally induced permittivity gradient and the electrolyte Seebeck effect, result in characteristic hydrodynamic screening. In comparison with recent experimental data on single-stranded DNA (2 ≤ n ≤ 80), our theory quantitatively describes the increase of the drift velocity up to n = 30; the slowing-down of longer molecules is well accounted for by a simple model for counterion condensation. It turns out that thermophoresis may change sign as a function of n: For an appropriate choice of the salt-specific Seebeck coefficient, short molecules move to the cold and long ones to the hot; this could be used for separating DNA by molecular weight.Effets thermoélectriques à l'échelle nan

    Nanoscale Seebeck effect at hot metal nanostructures

    No full text
    We theoretically study the Seebeck effect in the vicinity of a heated metal nanostructure, such as the cap of an active Janus colloid in an electrolyte, or gold-coated interfaces in optofluidic devices. The thermocharge accumulated at the surface varies with the local temperature, thus modulating the diffuse part of the electric double layer. On a conducting surface with non-uniform temperature, the isopotential condition imposes a significant polarization charge within the metal. Surprisingly, this does not affect the slip velocity, which takes the same value on insulating and conducting surfaces. Our results for specific-ion effects agree qualitatively with recent observations for Janus colloids in different electrolyte solutions. Comparing the thermal, hydrodynamic, and ion diffusion time scales, we expect a rich transient behavior at the onset of thermally powered swimming, extending to microseconds after switching on the heating
    corecore