16 research outputs found

    Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui, Central African Republic

    Get PDF
    Number of Anopheles (%) tested by bioassays in seven sites of Bangui, Central African Republic by using WHO test kits for adult mosquitoes. Six insecticides of technical grade were used, including two pyrethroids (deltamethrin and lambda-cyhalothrin), one carbamate (bendiocarb), two organophosphates (fenitrothion and malathion) and one organochlorine (DDT). (XLSX 15 kb

    Evidence of Transmission of Plasmodium vivax 210 and Plasmodium vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa

    Get PDF
    Current diagnostic and surveillance systems in Benin are not designed to accurately identify or report non-Plasmodium falciparum (Pf) human malaria infections. This study aims to assess and compare the prevalence of circumsporozoite protein (CSP) antibodies of Pf and P. vivax (Pv) in Anopheles gambiae s.l. in Benin. For that, mosquito collections were performed through human landing catches (HLC) and pyrethrum spray catches (PSC). The collected mosquitoes were morphologically identified, and Pf, Pv 210, and Pv 247 CSP antibodies were sought in An. gambiae s.l. through the ELISA and polymerase chain reaction (PCR) techniques. Of the 32,773 collected mosquitoes, 20.9% were An. gambiae s.l., 3.9% An. funestus gr., and 0.6% An. nili gr. In An. gambiae s.l., the sporozoite rate was 2.6% (95% CI: 2.1-3.1) for Pf, against 0.30% (95% CI: 0.1-0.5) and 0.2% (95% CI: 0.1-0.4), respectively, for Pv 210 and Pv 247. P. falciparum sporozoite positive mosquitoes were mostly An. gambiae (64.35%), followed by An. coluzzii (34.78%) and An. arabiensis (0.86%). At the opposite, for the Pv 210 sporozoite-positive mosquitoes, An. coluzzii and An. gambiae accounted for 76.92% and 23.08%, respectively. Overall, the present study shows that P. falciparum is not the only Plasmodium species involved in malaria cases in Benin

    Diversity and ecological niche model of malaria vector and non-vector mosquito species in Covè, Ouinhi, and Zangnanado, Southern Benin.

    Get PDF
    The present study aimed to assess mosquito species diversity, distribution, and ecological preferences in the Covè, Ouinhi, and Zangnanado communes, Southern Benin. Such information is critical to understand mosquito bio-ecology and to focus control efforts in high-risk areas for vector-borne diseases. Mosquito collections occurred quarterly in 60 clusters between June 2020 and April 2021, using human landing catches. In addition to the seasonal mosquito abundance, Shannon's diversity, Simpson, and Pielou's equitability indices were also evaluated to assess mosquito diversity. Ecological niche models were developed with MaxEnt using environmental variables to assess species distribution. Overall, mosquito density was higher in the wet season than in the dry season in all communes. A significantly higher Shannon's diversity index was also observed in the wet season than in the dry seasons in all communes (p < 0.05). Habitat suitability of An. gambiae s.s., An. coluzzii, Cx. quinquefasciatus and Ma. africana was highly influenced by slope, isothermality, site aspect, elevation, and precipitation seasonality in both wet and dry seasons. Overall, depending on the season, the ecological preferences of the four main mosquito species were variable across study communes. This emphasizes the impact of environmental conditions on mosquito species distribution. Moreover, mosquito populations were found to be more diverse in the wet season compared to the dry season

    Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.</p> <p>Methods</p> <p><it>Anopheles gambiae s.l </it>populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. <it>Anopheles gambiae </it>mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine <it>kdr </it>and <it>Ace.1<sup>R </sup></it>allelic frequencies and activity of the detoxification enzymes.</p> <p>Results</p> <p>Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in <it>An. gambiae s.l</it>. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of <it>An. gambiae s.s</it>. and <it>Anopheles arabiensis</it>. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. <it>Anopheles gambiae s.l</it>. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of <it>1014F kdr </it>allele was initially showed in <it>An. gambiae </it>from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the <it>L1014S kdr </it>mutation was found in <it>An. arabiensis </it>in Benin. The <it>ace.1<sup>R </sup></it>mutation was almost absent <it>in An. gambiae s.l</it>.</p> <p>Conclusion</p> <p>Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The <it>1014S kdr </it>allele was first identified in wild population of <it>An. arabiensis </it>hence confirming the expansion of pyrethroid resistance alleles in Africa.</p

    Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui, Central African Republic

    No full text
    International audienceBackground: Knowledge of insecticide resistance status in the main malaria vectors is an essential component of effective malaria vector control. This study presents the first evaluation of the status of insecticide resistance in Anopheles gambiae populations from Bangui, the Central African Republic.Methods: Anopheles mosquitoes were reared from larvae collected in seven districts of Bangui between September to November 2014. The World Health Organisation’s bioassay susceptibility tests to lambda-cyhalothrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%) and bendiocarb (0.1%) were performed on adult females. Species and molecular forms as well as the presence of L1014F kdr and Ace-1R mutations were assessed by PCR. Additional tests were conducted to assess metabolic resistance status.Results: After 1 h exposure, a significant difference of knockdown effect was observed between districts in all insecticides tested except deltamethrin and malathion. The mortality rate (MR) of pyrethroids group ranging from 27% (CI: 19–37.5) in Petevo to 86% (CI: 77.6–92.1) in Gbanikola; while for DDT, MR ranged from 5% (CI: 1.6–11.3) in Centre-ville to 39% (CI: 29.4–49.3) in Ouango. For the organophosphate group a MR of 100% was observed in all districts except Gbanikola where a MR of 96% (CI: 90–98.9) was recorded. The mortality induced by bendiocarb was very heterogeneous, ranging from 75% (CI: 62.8–82.8) in Yapele to 99% (CI: 84.5–100) in Centre-ville. A high levelof kdr-w (L1014F) frequency was observed in all districts ranging from 93 to 100%; however, no kdr-e (L1014S) and Ace-1R mutation were found in all tested mosquitoes. Data of biochemical analysis showed significant overexpression activities of cytochrome P450, GST and esterases in Gbanikola and Yapele (χ2 = 31.85, df = 2, P < 0.001). By contrast, esterases activities using α and β-naphthyl acetate were significantly low in mosquitoes from PK10 and Ouango in comparison to Kisumu strain (χ2 = 17.34, df = 2, P < 0.005).Conclusions: Evidence of resistance to DDT and pyrethroids as well as precocious emergence of resistance to carbamates were detected among A. gambiae mosquitoes from Bangui, including target-site mutations and metabolic mechanisms. The co-existence of these resistance mechanisms in A. gambiae may be a serious obstacle for the future success of malaria control programmes in this region

    Insecticide Resistance in <i>Aedes aegypti</i> Mosquitoes: Possible Detection of <i>kdr</i> F1534C, S989P, and V1016G Triple Mutation in Benin, West Africa

    No full text
    Epidemics of arboviruses in general, and dengue fever in particular, are an increasing threat in areas where Aedes (Ae.) aegypti is present. The effectiveness of chemical control of Ae. aegypti is jeopardized by the increasing frequency of insecticide resistance. The aim of this study was to determine the susceptibility status of Ae. aegypti to public health insecticides and assess the underlying mechanisms driving insecticide resistance. Ae. aegypti eggs were collected in two study sites in the vicinity of houses for two weeks using gravid Aedes traps (GATs). After rearing the mosquitoes to adulthood, female Ae. aegypti were exposed to diagnostic doses of permethrin, deltamethrin and bendiocarb, using Centers for Disease Control and Prevention (CDC) bottle bioassays. Unexposed, un-engorged female Ae. aegypti were tested individually for mixed-function oxidase (MFO), glutathione-S-transferase (GST) and α and β esterase activities. Finally, allele-specific PCR (AS-PCR) was used to detect possible kdr mutations (F1534C, S989P, and V1016G) in the voltage-gated sodium channel gene in insecticide-exposed Ae. aegypti. Most traps were oviposition positive; 93.2% and 97% of traps contained Ae. aegypti eggs in the 10ème arrondissement of Cotonou and in Godomey-Togoudo, respectively. Insecticide bioassays detected resistance to permethrin and deltamethrin in both study sites and complete susceptibility to bendiocarb. By comparison to the insecticide-susceptible Rockefeller strain, field Ae. aegypti populations had significantly higher levels of GSTs and significantly lower levels of α and β esterases; there was no significant difference between levels of MFOs. AS-PCR genotyping revealed the possible presence of 3 kdr mutations (F1534C, S989P, and V1016G) at high frequencies; 80.9% (228/282) of the Ae. aegypti tested had at least 1 mutation, while the simultaneous presence of all 3 kdr mutations was identified in 13 resistant individuals. Study findings demonstrated phenotypic pyrethroid resistance, the over-expression of key detoxification enzymes, and the possible presence of several kdr mutations in Ae. aegypti populations, emphasizing the urgent need to implement vector control strategies targeting arbovirus vector species in Benin

    Genetic structure of Anopheles gambiae s.s populations following the use of insecticides on several consecutive years in southern Benin

    No full text
    Abstract Background Several studies have reported the strong resistance of Anopheles gambiae s.l. complex species to pyrethroids. The voltage-dependent sodium channel (Vgsc) gene is the main target of pyrethroids and DDT. In Benin, the frequency of the resistant allele (L1014F) of this gene varies along the north-south transect. Monitoring the evolution of resistance is necessary to better appreciate the genetic structure of vector populations in localities subject to the intensive use of chemicals associated with other control initiatives. The purpose of this study was to map the distribution of pyrethroid insecticide resistance alleles of the Kdr gene in malaria vectors in different regions and ecological facies in order to identify the evolutionary forces that might be the basis of anopheline population dynamics. Methods The characterization of Anopheles gambiae s.l. populations and resistance mechanisms were performed using adult mosquitoes obtained from larvae collected in the four agroecological zones in southern Benin. Genomic DNA extraction was performed on whole mosquitoes. The extracted genomic DNA from them were used for the molecular identification of species in Anopheles gambiae s.l. complex and the identification of genotypes related to pyrethroid resistance as the Kdr gene amino acid position 1014 in sodium channel. Molecular speciation and genotyping of Kdr resistant alleles (1014) were done using PCR. Genepop software version 4.2 was used to calculate allelic and genotypic frequencies in each agroecological zone. The p value of the allelic frequency was determined using the binomial test function in R version 3.3.3. The Hardy-Weinberg equilibrium was checked for each population with Genetics software version 1.3.8.1. The observed heterozygosity and the expected heterozygosity as well as the fixation index and genetic differentiation index within and between populations were calculated using Genepop software version 4.2. Results During the study period, Anopheles coluzzii was the major species in all agroecological zones while Anopheles gambiae was scarcely represented. Regardless of the species, resistant homozygote individuals (L1014F/L1014F) were dominant in all agroecological zones, showing a strong selection of the resistant allele (L1014F). All populations showed a deficit of heterozygosity. No genetic differentiation was observed between the different populations of the two species. For Anopheles coluzzii, there was a small differentiation among the populations of the central cotton and bar-lands zones. The genetic differentiation was modest among the population of the fisheries zone (Fst = 0.1295). The genetic differentiation was very high in the population of Anopheles gambiae of the bar-lands zone (Fst = 0.2408). Conclusion This study revealed that the use of insecticides in Benin for years has altered the genetic structure of Anopheles gambiae s.s. populations in all agroecological zones of southern Benin. It would be desirable to orientate vector control efforts towards the use of insecticides other than pyrethroids and DDT or combinations of insecticides with different modes of action

    The current distribution and characterization of the L1014F resistance allele of the kdr gene in three malaria vectors (Anopheles gambiae, Anopheles coluzzii, Anopheles arabiensis) in Benin (West Africa).

    Get PDF
    BACKGROUND: The fight against malaria faces various biological obstacles, including the resistance of parasites to anti-malarial drugs and the resistance of mosquito vectors to insecticides. The resistance of Anopheles gambiae sensu lato (s.l.) to pyrethroids, the only class of insecticides used to impregnate mosquito nets, is known in Benin; the expansion of this resistance is influenced by the existence of gene flow between species, otherwise by the presence or absence of the kdr mutation in them. The objective of this study is to determine the spatial distribution of An. gambiae and the level of expression of the pyrethroid resistance kdr gene in seven agro-ecological zones of Benin. METHODS: The study was conducted in 18 localities belonging to seven agro-ecological zones where environmental parameters varied. The sites represent the main areas of eco-epidemiological malaria in Benin. Anopheles gambiae larvae were collected in natural breeding sites using ladles and dipping method and reared under standard conditions. These larvae were reared under standard conditions of temperature and humidity (26 to 30 °C and 60 to 90%) at the insectarium of the Centre de Recherche Entomologique de Cotonou (CREC). Adult female mosquitoes having emerged are morphologically and molecularly identified. Homozygous resistant (1014F/1014F), homozygous sensitive (1014L/1014L) and heterozygous (1014F/1014L) genotypes of the L1014F kdr gene mutation are determined by PCR. RESULTS: A total of 677 An. gambiae was subjected at the PCR. The results revealed the presence of three vector species of the An. gambiae complex, of which 409 Anopheles coluzzii, 259 An. gambiae, 5 hybrids (An. coluzzii/An. gambiae) and 4 Anopheles arabiensis in the different agro-ecological zones. The four An. arabiensis were only found in Dassa, a locality in the cotton zone of central Benin. The frequency of distribution of the L1014F allele of the kdr gene varies from 84.48 to 100% in An. gambiae, from 80 to 100% in An. coluzzii and from 0 to 75% in An. arabiensis in the different agro-ecological zones. Moreover, a significant difference is generally observed in the distribution of the L1014F allele (P < 0.05). By comparing in pairs the distribution frequencies of this allele in the two species by agro-ecological zone, only a significant difference is noted in the central cotton and fishery zones (P = 0.0496). CONCLUSION: In summary, even if the data are in small portions, the An. Arabiensis species was found only in central Benin and the L1014F allele of the kdr gene is widespread and seems to fix in all the species recorded in the different agro-ecological zones. This situation amplifies the problem of resistance, which could eventually be a significant obstacle for the malaria vectors control. Similarly, a study of their genetic structure via the L1014F allele is necessary in order to put in place strategies to manage this resistance. These strategies will take into account both the ecology and the genetic diversity of the organisms involved to preserve the effectiveness of pyrethroids, the only insecticides used for the impregnation of mosquito nets
    corecore